
Housing Is the Financial Cycle:
Evidence from 100 Years of Local Building Permits*

Gustavo S. Cortes
† Cameron LaPoint

‡

University of Florida Yale SOM

November 2024

[ latest version here ]

Abstract

Does the housing market lead the financial cycle? We address this question by creating a
new hand-collected database spanning a century of monthly building permit quantities and
valuations for all U.S. states and the 60 largest MSAs. We show that the option to build
embedded in permits renders volatility in residential building permit growth (BPG) a strong
predictor of aggregate and cross-sectional stock and corporate bond return volatility. This
predictability remains even after conditioning on a battery of factors, including corporate
and household leverage and firms’ exposure through their network of plants to other
localized physical risks like natural disasters. Cities and states with more elastic housing
supply consistently predict financial market downturns at 12-month horizons, resulting in
new trading strategies to hedge against overbuilding risk. A noisy rational expectations
framework in which local building permits serve as a quasi-public signal for dividends
explains these empirical patterns.

Keywords: Housing supply, building permits, real estate, option value, volatility, financial
crises, equities, corporate bonds, deep learning OCR

JEL Classification: E32, G01, G12, N22, R31

*We thank Igor Cunha, Zhi Da, Francesco Fabozzi, Carola Frydman, Will Goetzmann, Paul Goldsmith-Pinkham,
Joshua Hausman, Matt Jaremski, Tom Nicholas, Jonathan Payne, Geert Rouwenhorst, Nathan Seegert, Allison
Shertzer, Alp Simsek, Alan Taylor, David Weinstein, Wei Xiong, and seminar participants at Erasmus University
and University of Michigan for helpful comments and feedback. We are grateful to Cheryl Cornish and Bill Abriatis
of the Economic Indicators Division of the Census Bureau for providing scanned tables from the historical Building
Permits Survey. We thank Gwyneth Crowley at Yale University Library and Kris Abery at the Connecticut State
Library for assistance in locating the reports of the historical Building Permits Survey. We thank William Creech at the
National Archives for answering our questions about historical Census Bureau records and BLS Building Construction
reports. This research was financially supported by the Yale International Center for Finance and the Tobin Center
for Economic Policy. Finally, we thank a diligent team of RAs for their excellent work, including Fernando Reyes De
La Luz, Shawn Frazier, Luiz Ghiraldelli, Amit Kamma, Jakob Reinhardt, Gabriel Thomaz Vieira, and Franziska Yost.
First draft: May 2024.

†Warrington College of Business, University of Florida. 306 Stuzin Hall, PO Box 117168, Gainesville, FL
32611–7168. Email: gustavo.cortes@warrington.ufl.edu. Web: sites.google.com/site/cortesgustavos.

‡Yale School of Management. 165 Whitney Avenue, New Haven, CT 06511. Email: cameron.lapoint@yale.edu.
Web: cameronlapoint.com.

https://sites.google.com/site/cortesgustavos
https://www.cameronlapoint.com
https://papers.ssrn.com/abstract=4855353
mailto:gustavo.cortes@warrington.ufl.edu
https://sites.google.com/site/cortesgustavos
mailto:cameron.lapoint@yale.edu
https://www.cameronlapoint.com


1 Introduction

Economists have long sought to understand the relationship between housing markets and the
economy. Almost a century ago, Long (1939) wrote that “the building industry is probably the
most strategic single factor in making or breaking booms and depressions” (Long, 1939, p.17). From
the Great Depression of the 1930s to the Global Financial Crisis in 2008, fluctuations in the
housing market often precede and even predict significant economic downturns (Leamer, 2007,
2015). This idea is reinforced by the observation of “twin bubbles” in asset markets, where
real estate prices and sales volume reach their apex several months before similar peaks occur
in the stock market during economic expansions.1 The recurring pattern of housing market
distress preceding broader economic turmoil presents a compelling challenge for economists and
policymakers. Yet our understanding of these crucial macro-financial links remains surprisingly
limited, primarily due to a persistent shortage of granular, long-term data tracking local housing
market dynamics. This data gap has forced researchers to rely heavily on aggregate time series
evidence, leaving relatively unexplored how local housing market conditions ripple through
financial markets and affect the real economy.

In this paper, we provide a comprehensive examination of the links between local housing
markets and financial market conditions. By constructing a new dataset of U.S. historical local
building permits from 1919 to 2019, we investigate whether housing cycles predict the financial
cycle. Applying recent advances in optical character recognition (OCR) techniques and deep
learning algorithms, we digitize a wealth of archival records from Census surveys and industry
reports to create continuous time series of monthly residential building permit activity for all 50
states and the 60 largest metropolitan areas. Our geographically disaggregated data on permits
allow us to examine the predictive power of housing market fluctuations for local economic
activity, aggregate stock and corporate bond market volatility, and the volatility of individual
firms’ securities over a period spanning 20 recession episodes.

As illustrated by the century of U.S. real total building permit values plotted in Figure 1, our
main finding is that the volatility of local building permit growth (BPG) is a strong predictor
of future asset market volatility, even after controlling for a wide range of factors such as
corporate and household leverage ratios, natural disaster risk, population growth, and other
macroeconomic conditions like industrial production. We consistently uncover this pattern over
time, proving that building permits are not just a harbinger for particular types of financial crises,
such as the subprime mortgage episode in the years leading up to the Great Recession. Moreover,

1Pronounced examples of the “twin bubbles” time series phenomenon include the 1920s Florida Land Boom,
which preceded the Great Depression (Knowlton, 2020; Calomiris and Jaremski, 2023); 1980s Japan—where Tokyo
area land prices flat-lined in 1987 before the Nikkei crash in January 1990 (LaPoint, 2022); the 2000s U.S., where cities
with elastic housing supply like Las Vegas experienced downturns in 2006 before Lehman’s 2008 fall (Nathanson and
Zwick, 2018); and more recently with Chinese residential property prices dropping in mid-2014 before the Shanghai
Stock Exchange crash of June 2015 (Liu and Xiong, 2018).
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FIGURE 1. Total Real Value of U.S. Monthly Building Permits Issued, 1919–2019
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Notes: The figure plots the monthly total log real value of building permits issued in the U.S. from 1919M1 to 2019M12.
The vertical dashed lines indicate the gap between the two sources used in our full sample. Data for the first half of
the sample is from Dun & Bradstreet’s, and the second half is from the U.S. Census Bureau. We deflate permit values
to real 2012 average USD using the monthly historical CPI from Shiller (2015) before seasonally adjusting each series.
We rank states from least to most housing supply elastic according to the 2006 version of the Wharton Residential
Land Use Regulatory Index (WRLURI) of Gyourko et al. (2008). The series for the top 3 elastic states includes permits
issued in Kansas, Louisiana, and Missouri, while the series for the bottom 3 elastic states includes permits issued in
Maryland, Massachusetts, and New Jersey. Grey-shaded areas indicate NBER-dated recessions. See Appendix B for
details on how we perform the seasonal adjustment and harmonize data sources over the full hundred-year period.

we document that this predictability holds not only for the stock market but also the corporate
bond market, indicating that the housing market’s influence extends across asset classes.

The richness of our permits data allows us to geographically disaggregate the predictability
of housing market volatility. A handful of geographic submarkets drives this volatility; the
predictive power of BPG volatility is particularly strong and positive for more housing
supply-elastic cities and states in the South (e.g., Florida and Georgia), which lead the stock
and bond markets by longer horizons relative to supply-inelastic regions like New England.
For instance, for every 10 percentage point increase in cumulative BPG volatility over the prior
12 months in Florida, stock return volatility spikes by 0.2 percentage points, and bond return
volatility spikes by 0.7 percentage points. In contrast, BPG volatility has no clear predictive
power for stock return volatility over the same 12-month horizon in states with restrictive policies
towards new residential development (e.g., Connecticut). Figure 1 shows that while housing
supply elastic and inelastic areas largely comove, boom-busts in building permits are more
pronounced in elastic areas around crisis events.

To further illustrate the type of soft information building permit volatility conveys to investors
in financial markets, we zoom in on the Global Financial Crisis. We observe that single-family
home BPG volatility has stronger predictability in states and metros with a large share of

3



subprime MBS loans on the eve of the crisis (Mayer and Pence, 2008). Since housing markets
co-move, the signals offered by BPG volatility may be collinear across locations. We therefore
conduct a principal components analysis (PCA). The first component alone delivers a 17% R2

for stock return volatility and a 20% R2 for bond return volatility. Because jumps in the first
component anticipate well-known events in the narrative of the Global Financial Crisis, we label
the first component as the “subprime” factor. These jumps include the failure of Bear Stearns, the
Lehman Brothers bankruptcy, and the peak volume of foreclosure auction sales in the Summer of
2010. Interestingly, the subprime factor only emerges when we conduct PCA in a time window
around the GFC. When we use the full post-1960s time series, the first principal component
is instead dominated by input supply frictions around the oil crises of the 1970s. Hence, the
subprime factor we identify is distinct from a more general leverage build-up factor.

Although we emphasize that building permits predict return volatility across many episodes,
using recent decades as a case study helps us rule out confounding mechanisms by merging
in available corporate data. To gain further insights at more granular levels of observation,
we match listed firms to a registry of their plant locations to construct measures of their
physical exposure to BPG volatility weighted by their plants’ sales or employment. For every 10
percentage point increase in cumulative BPG volatility exposure, a firm’s stock return volatility
increases by 0.1 percentage points, even after controlling for standard balance sheet variables
like EBITDA, Tobin’s Q, size, age, and leverage. Predictability in the cross-section of equities
gives rise to the possibility of using BPG volatility as a factor to design trading strategies
hedging against the geographic exposure of firms’ operations to real estate markets which
face a glut of new residential development.

We inspect the mechanisms through which volatility in building permits is a predictor of
the financial cycle. Building permits are valid predictors of macroeconomic risk because they
represent a type of call option. Real estate developers and investors use building permits as
an option to build, exercising their rights when macroeconomic prospects are favorable. In bad
economic times, agents choose not to exercise these options. This phenomenon is exemplified
by the “skyscraper wave” in New York City around the Great Depression, when permits for
remarkable buildings of the Manhattan skyline were delayed, built with a lower number of
levels, or never built (Barr, 2010; Nicholas and Scherbina, 2013; Cortes and Weidenmier, 2019).

With this intuition at hand, we formalize the mechanisms behind the observed connection
between building permits and macroeconomic risk by introducing a textbook real option value
theory (OVT) model of building permits (Geltner et al., 2014). We then embed the OVT model
for building permits within an asymmetric information framework of financial markets à la
Grossman and Stiglitz (1980). Our complete model features two types of markets: the first consists
of a continuum of local markets in which real estate investors decide whether or not to purchase
permits to develop their land at its highest and best use. Investors file a permit whenever the
project has positive expected net present value if executed. The value of a permit depends on
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the probability of the project’s success—which is a function of time-varying factors such as local
employment prospects, weather, and regulatory shocks.

The second market consists of informed and uninformed investors who trade a risky asset in
fixed supply with noise. Informed investors observe both the asset’s price and a quasi-public
signal about future dividends, while uninformed investors only observe the price. We collapse
growth in aggregate permitting activity within each local market into a quasi-public signal
observed by the informed asset traders located in the same area. We recover a standard
CARA-normal demand system and show how asset pricing variables respond to changes in
the precision of the quasi-public signal, which maps directly to the BPG volatility factor we
probe in our empirical setting.

The model admits four main testable implications, which are supported by our empirical
findings. First, building permits proxy for local economic fundamentals. Second, movements
in permit volumes positively predict aggregate asset price movements. Third, the sign of
comovement between BPG volatility and asset price or total return volatility is heterogeneous
across localities. The derivative of return volatility with respect to BPG volatility has a
theoretically ambiguous sign, and is more likely to be positive if an area has low levels of
BPG volatility—that is, closer to a balanced growth path, thus leading to more precise signals.
Hence, the model rationalizes why we estimate negative or near-zero loadings on BPG volatility
for some localities and time periods featuring high permit volatility. Fourth, the strength of
the predictability of BPG volatility is negatively correlated with the stringency of physical and
land use regulatory constraints on housing supply.

We introduce physical supply constraints into the model via a cap on the number of permits
that can be filed in a locality, which is independent of construction costs; physical constraints on
new construction consist of mountainous terrain and water or wetlands coverage (Saiz, 2010; Lutz
and Sand, 2023). We distinguish physical constraints from regulatory constraints (Gyourko et al.,
2008, 2021; Bartik et al., 2024), which we model as a profit wedge that raises construction costs,
rendering development more expensive in already built-up housing markets (Favilukis et al.,
2020). Importantly, the existence of land use regulations alone cannot explain the cross-sectional
patterns we observe in the longitudinal data given that many restrictions beyond minimum
lot size rules were passed by homeowners in the post-1970s period (Shertzer et al., 2022), in
part, to preserve rising home equity values (Fischel, 2005).

Our paper makes several key contributions to the literature on the real estate sector and
its links with the macroeconomy. First, we provide new evidence from a century of granular
data in favor of the hypothesis that housing explains a large portion of the financial cycle.
Second, we introduce a new monthly factor, BPG volatility, for forecasting stock returns,
which is orthogonal to other physical sources of risk at the firm level. Finally, our newly
constructed dataset offers a valuable resource for future research on local housing supply and
macroprudential housing policy.
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We extend existing housing market research by constructing a comprehensive, long-run dataset
of U.S. building permits. Unlike previous studies that focused on house price indices at the
country level or individual cities (e.g., Knoll et al., 2017; Korevaar, 2023), our data provides
coverage across both granular geographies and time. We expand on the work of Stock and
Watson (2010), who digitized state-level historical Census Building Permits Survey (BPS) data
from 1969–2007, by extending the BPS data back to its 1959 inception for both states and
MSAs, as well as for single-family and multi-family units. More importantly, we splice the
complete BPS series with Dun & Bradstreet’s records dating back to 1919, accounting for changes
in geographic boundaries over time.

Our complete dataset, combined with recent work on historical housing price indices (Lyons
et al., 2024) and construction sector productivity (D’Amico et al., 2024), offers new insights into
the evolution of U.S. housing supply over the twentieth century. In most states, single-family
permitting per capita peaked in the 1970s and plummeted after the 2008 Financial Crisis. We
show using permit panel microdata from CoreLogic Building Permits that over 80% of permits
issued for new residential units since 1990 are ultimately exercised, with large differences in
completion probabilities across states depending on the rigidity of local planning laws. The fact
that residential permit completion rates, especially for single-family units, are high tells us that
swings in permits translate to housing supply curve shifts. However, the fact that completion
rates are well below 100% means that permits embed additional information about investors’
beliefs beyond simply providing a housing market indicator that leads new building starts.

We also provide novel evidence supporting the hypothesis that housing explains a significant
portion of the financial cycle, using a century of granular data. An important innovation is
introducing a new monthly factor, BPG volatility, for forecasting stock returns. This factor is
orthogonal to other physical sources of risk at the firm level, offering a new perspective on the
relationship between real estate and financial markets. While previous research using modern
Census BPS data has primarily focused on forecasting indicators of the real economy, our work
bridges the gap to financial forecasting, expanding on studies like Ludvigson and Ng (2009) that
explored macro factors’ predictive power for government bond returns.

We contribute to understanding of the role of housing markets in financial crises and
recessions (Goetzmann and Newman, 2010; Brocker and Hanes, 2014; Fishback and Kollmann,
2014; Gjerstad and Smith, 2014; White, 2014; Cortes and Weidenmier, 2019). We show that the
extent to which permits capture macroeconomic risk varies depending on pre-existing local
housing supply frictions. We thus offer a theoretical foundation for the heterogeneity in permit
predictability observed in the geographic cross-section. Our approach provides insights beyond
traditional leverage and credit growth explanations (Schularick and Taylor, 2012; Jordà et al.,
2013; Greenwood et al., 2022; Müller and Verner, 2023), demonstrating that fluctuations in
local housing markets help link “Main Street” to “Wall Street” by providing informed, rational
investors with a signal about local economic activity. This perspective contrasts with studies
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focused on non-rational beliefs (Shiller, 1981, 2015) or over-optimism (Baron and Xiong, 2017),
highlighting building permits as a forward-looking indicator in the real estate market.

Beyond improvements to the measurement of links between real estate and financial markets,
our work helps resolve the “co-movement” puzzle. Kuvshinov (2023) finds using rent-price
ratios in the Jordà et al. (2019) database covering 17 countries over 150 years that cross-asset
predictability is limited, even after accounting for risk factors like bank leverage and real
credit. This lack of co-movement arises despite a robust prediction of macro-finance theories
that housing, equity, and corporate bond markets should positively co-move (e.g., Lettau and
Ludvigson, 2001; Piazzesi et al., 2007). Fama and French (2023) argue that the predictability of
house prices for future rents can be improved by across-area demeaning, because local housing
markets co-move. We propose a partial resolution to the co-movement puzzle by honing in on a
segment of the real estate market—permits for new construction—which is more forward looking
than house prices and transaction volume, and which is priced more like a financial asset than
pre-existing structures for which hedonic demand characteristics matter more.

2 Theoretical Framework

In this section, we present a simple theoretical framework to highlight how local housing markets
are linked to fluctuations in risky asset prices. We derive testable predictions which we then take
to our longitudinal database of building permits. The model features two asset markets and two
periods, t and t + 1. In period t developers make decisions on whether or not to acquire permits
to construct housing in each local market. Investors trade in nationwide financial markets after
observing in t prices and signals about future period t + 1 dividends. Building permit volume
forms a local quasi-public signal observed by some investors playing an investment game with
information aggregation à la Grossman and Stiglitz (1980).

Housing development. Let i ∈ [0, 1] index a unit mass of potential housing market investors,
and s ∈ {1, . . . ,S} index the locality (e.g., a state, MSA, or county) where the property is located.
Developable land is in fixed supply Ts < 1, and each investor can hold a permit on at most
one parcel. Standard real option value theory (OVT) says that the value of holding entitled
land is determined by the earnings potential of the underlying parcel less any construction
costs required to deploy the land at its highest and best use (Geltner et al., 2014). Therefore,
the expected value of a permit option if exercised depends on the probability of the project’s
success f (Xs,t), the construction cost Ci,s,t+1, and the market value of the land Li,s,t+1 plus
the new building Bi,s,t+1 on top of it.

Suppose construction costs are paid in period t + 1 but known in t. If the project is successful,
then the property will be valued at its prevailing market price Bi,s,t+1 + Li,s,t+1. According to
standard development option pricing models, this land vs. building distinction is important for
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extracting forward-looking sources of macroeconomic risk, because uncertainty about payoffs
from exercising the option is positively linked to land values (Titman, 1985; Cunningham, 2006).
This setup leads us to the expected value of an exercised permit Et[V∗

i,s,t+1]:

Et[V∗
i,s,t+1] = f (Xs,t) ·Et[Bi,s,t+1 + Li,s,t+1]− Ci,s,t+1, (2.1)

The success probability f (Xs,t) depends on a vector of potentially time-varying factors Xs,t, such
as local macroeconomic fundamentals (e.g., unemployment) or the history of local weather and
regulatory shocks which could lead to delayed or rescinded approvals. A key feature of our
model-accou–and supported by the data, as we show in Section 5—is that developments in
housing markets (Main Street) are predictive of financial market (Wall Street) movements due
to potentially unobserved elements of Xs,t.

We can further simplify (2.1) by invoking a replacement cost approach to valuing buildings,
as adopted by Dun & Bradstreet’s for their permit series that we use in our pre-1960s analysis. If
buildings are always valued at their replacement cost, assuming the construction cost is inclusive
of any teardown costs or administrative fees, then Bi,s,t+1 = Ci,s,t+1, ∀i.2 Suppose further that
housing production is Cobb–Douglas, so land values are proportional to the attached structure’s
value: Li,s,t+1 = φi,s · Bi,s,t+1. Equivalently, the fraction of land in the housing production
function is φi,s/(1 + φi,s), and it varies by parcel. The land value fraction is known to the
landowner, since each local assessor office splits the value of a parcel into building and land
components for levying property taxes.3

With these two simplifying assumptions, we can write the expected value of the exercised
option and current permit value Vi,s,t as:

Et[V∗
i,s,t+1] =

(
φi,s · f (Xs,t) + ( f (Xs,t)− 1)

)
· Ci,s,t+1 (2.2)

Vi,s,t = max{0,Et[V∗
i,s,t+1]} (2.3)

Equation (2.3) follows the principle that the value of a permit depends only on the outcomes that
result in the call option with a strike price of Ci,s,t+1 finishing in the money, otherwise it has zero
value (Natenberg, 2014). Combining (2.2) with (2.3), we learn that investors demand a permit
whenever a project has positive expected value—that is, if and only if f (Xs,t) > 1/(1 + φi,s).
We also observe that standard building permit series which incorporate construction costs are

2In practice, investors also incur small fees for filing permit applications or obtaining certificates of occupancy,
both of which we have implicitly rolled into Ci,s,t+1.

3We have assumed that housing investors have rational expectations with respect to building values and that they
use the replacement cost approach. If it is the case that φi,s = φs, ∀i, then in a given area all housing market investors
either permit or do not permit, up to the land endowment constraint Ts.
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proportional to Vi,s,t, but may miss the component of expected value originating from the
risk factors embedded in f (Xs,t).4

Aggregating up equation (2.3) and the decision embedded within it, we obtain aggregate local
permit values and permitting activity, respectively:

Vs,t =
∫

i
Vi,s,t · di (2.4)

Qs,t =
∫

i
1{Vi,s,t > 0} · di ≤ Ts (2.5)

where Qs,t is equivalent to the total number of expected NPV positive projects in any period t.
Qs,t is bounded above by the developable land endowment in s.5 We will posit that Qs,t and
permit volume growth rates qs,t = ∆ log Qs,t form quasi-public signals observed by informed
investors in financial markets, while permit values Vs,t are not readily discernible from public
data. We justify our focus on Qs,t rather than Vs,t as a signal based on the data compilation
efforts we describe in Section 3. From equation (2.2), Qs,t aggregates local housing market
investors’ beliefs about local economic fundamentals f (Xs,t), which are not directly observable
to investors in financial markets.

Financial markets. We adopt the standard Grossman and Stiglitz (1980, hereafter GS) setup to
characterize information aggregation in financial markets. There is a risky asset, such as corporate
bonds or equities, that pays an unknown dividend d in period t + 1, where dt+1 ∼ N (d, σ2

d ).
There is a unit mass of investors j(s) ∈ [0, 1] in each locality s who trade the risky asset in
period t at price pt. To resolve the Grossman–Stiglitz paradox, the supply of the risky asset
A is random so that prices are not perfectly informative:

A = m + u, with m > 0 and u ∼ N (0, σ2
u) (2.6)

where u denotes noise due to either unmodeled noise traders dumping shares into the market or
firms issuing a random number of securities. There is also a riskless asset with a rate r between
t and t + 1. To limit the notational burden, in what follows we suppress the time subscripts.

4Davis and Heathcote (2007) show that the share of land in aggregate U.S. housing value has increased since the
1970s, primarily due to declining substitutability of new homes for old homes. The assumption of a static φ is more
likely to hold for a context like 1920s Florida, where most housing was newly built. On average, between 1975 and
2006, 36% of aggregate U.S. housing value is land, implying φ = 0.56.

5We normalize the land endowment (and, consequently, permit volume) to a unit scale. One can interpret this
convention as Ts is the share of developable land akin to the Saiz (2010) physical geography-based measures. Qs,t
then represents the share of developable land newly permitted for development in period t.
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Investors in the risky asset market have constant absolute risk aversion (CARA) utility over
consumption with coefficient of absolute risk aversion γ:

−E[exp(−γ · cj)]

There is asymmetric information in the risky asset market. A fraction λs of investors are informed
and observe a signal about the dividend, and this signal is common to all informed investors
operating in s. The other (1−λs) fraction do not observe the signal, and are therefore uninformed.
All investors observe the price p. Note at this stage that while information is aggregated at a
local level, the asset market is national, so there is only one price p which clears the market. This
distinction is key for the model’s ability to explain the heterogeneous effects of local housing
markets on asset markets that we find in the data.

Let building permit growth (BPG) qs serve as this quasi-public signal, aggregated from the
local housing market according to equation (2.5). BPG relates to dividends according to:

qs = d + εs, with εs ∼ N (0, σ2
q(s)) (2.7)

where εs is independent of d. The idea behind local BPG as a quasi-public signal for future
dividends is that positive swings in permitting activity relative to trend reflect developers’
positive beliefs about a project’s future values given local fundamentals Xs,t which determine
the project’s probability of success via equation (2.2).

A key reason why we define the quasi-public signal in growth rates rather than levels is that
qs has full support despite the fact that Qs must be non-negative and is bounded above by
the local land endowment. To see this, note that the maximum growth rate in local permits
is log(Ts) − log(0) = +∞ and the minimum growth rate is log(0) − log(Ts) = −∞, implying
that qs follows a standard normal. In contrast, the level of building permits Qs as a quasi-public
signal would instead follow a truncated normal distribution in each locality with two truncation
points at 0 and Ts. Several authors have shown that extensions of the canonical [GS] paradigm
featuring CARA utility with truncated normality produce the usual demand function with a
mean-variance term plus a correction term for the truncation (Yuan, 2005; Pálvölgyi and Venter,
2015). The correction term is a non-linear function of the truncation points, mean, variance, and
risk tolerance.6 Hence, the scope for multiple equilibria is more limited by specifying BPG rather
than permit levels as the quasi-public signal in an asymmetric information context.

Noisy Rational Expectations Equilibrium. Under these conditions, we can define a noisy
rational expectations equilibrium (NREE) as a price function p({qs}Ss=1, u) and set of demand

6The penalty term arises because there is a mass of εs which deliver the same equilibrium asset price, meaning
the uninformed investors’ demand function is no longer fully linear. We relegate to Appendix A the derivations for
versions of our model with permit levels as the signal.
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functions xj(s) for the informed (I) and uninformed (U) investors j(s) with information set
ωj(s) satisfying:

Portfolio optimization: xj(s) =
E[d|ωj(s)]− (1 + r) · p

γ · Var[d|ωj(s)]
(2.8)

Market clearing:
S
∑
s=1

[
λs · xI(qs, p(qs, u)) + (1 − λs) · xU(p(qs, u))

]
= m + u (2.9)

No cross-market arbitrage (law of one price): ps = p, ∀s (2.10)

Proposition 1. The price function which satisfies the three conditions for a noisy rational expectations
equilibrium is linear in the local signal qs and noise u and follows:

p = ϕ0(s) + ϕq(s) · (qs + ϕu(s) · u), ∀s (2.11)

Moreover, ϕq(s) > 0 and ϕu(s) < 0, regardless of the coefficient of absolute risk aversion γ, so the asset
price loads positively on building permit growth in each locality and negatively on noise.

Proof. We derive the expressions for the coefficients [ϕ0(s), ϕq(s), ϕu(s)] in Appendix A.

The coefficients [ϕ0(s), ϕq(s), ϕu(s)] vary by locality through the fraction of informed investors
λs and BPG volatility σq(s). This means that even if all areas experienced the same permit growth
rate qs, there would still be heterogeneity in the informativeness of the local BPG signal for asset
prices (and returns). The coefficients in equation (2.11) are functions of the precisions of the
dividend, the signal, and the transformed signal p̃. Uninformed investors only observe the price,
but in equilibrium this is a transformed version of the local quasi-public signal and noise:

p̃ =
p − ϕ0(s)

ϕq(s)
= qs + ϕu(s) · u (2.12)

The transformed signal based on the price therefore has variance σ̃2
p = σ2

q(s) + ϕ2
u(s) · σ2

u .

The derived relation between equilibrium asset prices and local housing markets leads to four
main testable implications which we take to the data:

1. Building permits proxy for local economic fundamentals. This follows from the option value
theory principles underlying the market for building permits. Developers apply for permits
when the project is NPV > 0, and based on (2.2) this is more likely to be true when local
fundamentals Xs,t deliver a higher probability the project comes to fruition. If there is a
large enough improvement in local fundamentals between periods, then qs,t,t+1 > 0.

2. Movements in permit volumes positively predict aggregate asset price movements. It follows from
the equilibrium price function and proof to Proposition 1 that ∂p/∂qs = ϕq(s) > 0, ∀s.
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3. The sign of comovement between BPG volatility and asset price or total return volatility is
heterogeneous across localities. A related corollary says:

Corollary 1.1. Given the equilibrium price function in equation (2.11) and the definition of the
transformed price signal in (2.12):

(a) Let σ2
p denote the variance of the equilibrium risky asset price. ∂σ2

p/∂σ2
q(s) has an ambiguous

sign, but is positive for sufficiently small local BPG volatilities σ2
q(s).

(b) Normalize the ex ante risky asset price to be pt = 0, so that the total return can be written
as rA = pt+1 + dt+1, with variance σ2

r = σ2
p + (1 + 2ϕq(s)) · σ2

d . Then ∂σ2
r /∂σ2

q(s) has an
ambiguous sign, but is positive for sufficiently small local BPG volatilities σ2

q(s).

Proof. We show the full comparative statics with respect to σ2
q in Appendix A.

Corollary 1.1 indicates that we should expect some heterogeneity across locations in the
signs of the loadings of risky asset price and asset return volatility on local BPG volatility.
Intuitively, investors trade more aggressively on positive news about building permits
when the signal is more precise relative to (aggregate) noise. Indeed, we will find in
our main results of Section 5 that localities with relatively large average BPG volatility
(e.g., Connecticut) have low values of ∂σ2

r /σ2
q(s), while states and MSAs with small average

BPG volatility (e.g., Florida) have high predictability. Probing further why areas differ in
equilibrium permits leads us to the final testable prediction offered by our model.

4. All else held equal, the precision of BPG as a signal for aggregate asset price movements is positively
correlated with physical geography constraints on local real estate development. Consider again
the example of a high BPG volatility state like Connecticut and a low volatility state like
Florida. Connecticut also faces fewer physical constraints on new housing development
than Florida; according to the measure produced by Saiz (2010), Hartford, CT has a
developable land share of TCT = 0.77, and the average MSA in Florida has TFL = 0.47
due to a large fraction of the state being covered by wetlands unsuitable for housing.

Suppose the local economies of the two states experience prolonged booms, leading to
an increase in the probability of project success, f (Xs,t). This will result in an expansion of
demand for permits in both states, but the constraint on permit levels in (2.5) is always more
likely to bind for FL, thus dampening σq(FL). Informed investors extract more information
from swings in permits in Florida given that there is a larger steady-state inaction region.
Hence, BPG volatility will be a more precise signal relative to noise for states like Florida
than Connecticut.

In Appendix A, we offer a version of our Grossman and Stiglitz meets OVT model which
allows for permit signals qs,t to be collinear across local markets, in which case qs,t is
drawn from a joint distribution. In the data, there is a strong negative relationship between
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building permit activity and the stringency of local regulations on new housing supply
at both the state and sub-state levels (Gyourko et al., 2008; Gyourko et al., 2021; Bartik et
al., 2024). We microfound this result by endogenizing the construction cost Ci,s,t+1 term
from the profit-maximization problem of a developer who faces a production function with
decreasing returns to scale in local labor inputs. Heterogeneity in local housing supply
elasticities manifests via a “profit wedge” in the developer’s production function arising
from local building restrictions based on regulatory barriers to new construction.

Accounting for both sources of supply restrictions is essential because our results on
the linkages between real estate and financial markets hold longitudinally. Since the
1970s represented an inflection point for the complexity of laws governing new building
approvals (Shertzer et al., 2022), regulatory constraints cannot fully explain the patterns we
observe in the data for earlier financial crises such as the Great Depression. Further, physical
and modern regulatory restrictions are positively correlated. The MSA cross-sectional
correlation between the undevelopable land share and the 2006 version of the Wharton
Residential Land Use Regulatory Index is 33%.

3 Data and Motivating Facts

In this section, we describe how we combine several sources of historical building permit counts,
valuations, and residential price indices to construct empirical versions of the forward-looking
housing market measures microfounded in the preceding theoretical framework. Our resulting
database spans over a century (1919 – present) for the entire U.S., all 50 states, and 60 MSAs
with continuous monthly time coverage.

3.1 Constructing Long-Run Building Permit Data Series

We combine hand collection and deep learning OCR techniques to digitize the data and create
a continuous time series of building permit activity at the state and metropolitan area levels.
We provide further details on data limitations, including the fact that land values are not
capitalized into the permit series, and assumptions needed to splice the series in Appendix B.2;
discuss the technicalities of our OCR data collection in Appendix B.3; and describe the seasonal
adjustment methods in Appendix B.4.

1919–1957 Period. We combine several data sources to build our long-term monthly panel of
building permit values. For the earlier decades, we follow Cortes and Weidenmier (2019) and
use historical building permit data reported in issues of Dun & Bradstreet’s Review—renamed
in 1937 to Dun’s Statistical Review. The real-time data are assembled from building inspector
reports. This allows us to collect the data for a growing number of cities between 1919M1
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and 1957M10.7 The first volume in 1919 had 164 cities, which remained constant until 1923.
After further expansions in the mid-1920s, the sample stabilized at 215 cities included within
each annual volume starting in 1927.

This expansion in the number of cities reporting building permit data reflects the growing
comprehensiveness and scope of the Dun’s publications in capturing the dynamics of urban
development during this period. In the end, we obtain a balanced panel of 21 cities from 1919M1
and 65 cities with a complete time series starting from 1927M1. Appendix Figure B.1 shows the
number of cities with permit valuations in the Dun’s data over time.

To ensure the accuracy and reliability of the data in this earlier period, we cross-validate our
Dun’s series with annual data from the Bureau of Labor Statistics (BLS) Construction Reports,
which cover construction occurring over most years between 1920 and 1953. The BLS reports
contain data on the annual total number and valuation of permits, as well as construction costs,
broken down by new residential and non-residential buildings vs. permits for alterations and
repairs. Tables report information covering 1,790 cities from 1940 onward. Survey methodology
used by the BLS informed the later monthly surveys formally taken over from BLS by the Census
Bureau in July 1959 (Census Bureau, 1959). The BLS reports, therefore, provide a valuable check
on the consistency and quality of our primary data sources prior to Census coverage.

1957–1959 Period: Data Limitations. Dun & Bradstreet ceased publication of Dun’s Statistical
Review in 1957 before the Census Survey of Construction and Building Permits Surveys began to
be regularly published. For the short gap covering November 1957 up to and including April
1959, we only observe building permit data for cities in New York. The State of New York
published the Quarterly Summary of Business Statistics, obtained from HathiTrust. We use the
richness of our long-run time series to extrapolate from New York State’s data, applying VARMA
models to interpolate the missing data for locations outside New York (cf. Appendix B).

1959–1987 Period: Historical Census Building Permit Survey. The most comprehensive source
of information on U.S. local building permit activity for newly constructed buildings is
the Census Bureau’s Building Permit Survey (BPS). In conjunction with the Department of
Commerce, the Census has continuously administered and reported data from the BPS each
month starting in May 1959. For each level of geography—State, MSA, and “Place” (i.e., a county,
town, or village)—the BPS includes monthly tables consisting of privately-commissioned permit
quantities and valuations broken down by units in single-family houses, two-family buildings,
three-and-four-family buildings, and five-or-more family buildings.8

7We begin our sample in 1919 rather than earlier years, as the Dun’s publications reported permit counts
sporadically and for a smaller set of series before 1919.

8The BPS stopped listing separate numbers for public permits with the modern version of the survey in 1988, and
in the years before 1988 moved to reporting them only quarterly. We exclude permits associated with public contracts
from our analysis as these do not represent arms-length market transactions.
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While the modern BPS data are digitized and readily downloadable, there is no repository for
data or tables in the underlying reports prior to 1988. We obtained a subset of the permit tables
for states and MSAs directly from the Economic Indicators Division of the Census Bureau. To
source the place tables and remaining months for the MSAs and states, we either downloaded
the reports from HathiTrust or contacted the network of Regional Depository Libraries (RDLs).
In some cases, scanned tables from HathiTrust were too deprecated to apply OCR techniques,
and we thus commissioned fresh, high-quality scans of the tables from the Connecticut Regional
Depository Library to limit measurement error in transferring text to data.

We focus on locations within the 48 contiguous states in our analysis, as permitting activity is
generally too lumpy in smaller jurisdictions for us to obtain stable estimates from the GARCH
models we adopt in Section 4 to extract building permit growth (BPG) volatility. Part of this
may be due to measurement error and non-response error from the BPS sampling frame, which
requires the Census to provide imputed estimates that can greatly differ from reported numbers.
Cities in small states like Alaska, Hawaii, Montana, and Nevada are also not included in the
earlier portion of the Dun’s sample.

When the survey started in 1959, there were no separate series with permits aggregated by
state and MSA. The Census later added in May 1960 a new set of reports to the BPS containing
tables by state and MSA. Before May 1960, we obtained counts at the state and MSA level by
aggregating from the place level. We describe the steps involved in this aggregation procedure
and provide a taxonomy for the complete set of series available in the BPS reports in Appendix B.
In the initial 1959 survey year, the Census surveyed over 7,300 places spanning 174 MSAs and
provided totals for 42 MSAs; this expanded to 61 MSAs starting in January 1964. To create a
geographically harmonized series, we aggregate numbers from the place tables to adjust for
changes over time in MSA definitions.

1988–2019 Period: Modern Census Building Permit Survey. We download the modern data
period starting in 1988M1 for the sub-national level from the raw master text file available
through the U.S. Census Bureau website. Updates to the BPS series can be automatically
downloaded with a one-month lag via the Federal Reserve Bank of St. Louis’s FRED API.
We opt to end our estimation sample at 2019M12 to avoid the COVID-19 crisis due to the
unique mismatch between housing demand and supply it created, alongside lockdown and
public health restrictions which may have led to deferred construction (Ghent et al., 2024).
The number of MSAs with permit series in the modern BPS stabilized in 2008, with data for
113 MSAs currently downloadable.
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The Census Bureau relies on imputations using historical survey response rates and population
proportionality-based estimates in periods where data from certain places are unavailable.9 In
the modern survey, the Census provides both the raw survey variables and versions obtained
via imputing missing information. We use the imputed series from the modern period to match
conventions of earlier years of BPS data for which we only have the counts inclusive of any
imputation procedures conducted by the Census.10

3.2 Stylized Facts about Historical Local Residential Permits

We plot in Figure 2 seasonally adjusted permit counts per 10,000 inhabitants for total residential
units and single-family units for all 50 states covering the entire span of the Building Permit
Survey. Before scaling by population, we seasonally adjust each building permits series using the
Census X-13 ARIMA–SEATS filter, described in further detail in Appendix B.4. We create similar
figures for our seasonally adjusted Dun’s Review state-level permit value series in Appendix B.1
and plot the raw Census permit counts in Appendix B.2. Scaling permits by population offers a
measure of planned new residential units relative to housing demand in an area.

Several stylized facts emerge from plotting our newly collected permit data, for which we
provide formal statistical evidence in subsequent analyses. First, permits are procyclical and
lead recessions; this is true both in aggregate (as argued by Leamer, 2007; Stock and Watson,
2010), and for particular geographic areas. For example, Florida permits peak 5 months before
the 1973 OPEC recession and lead the Great Recession by almost two years. Our main results
in Section 5 highlight why certain states like Florida predict stock and bond return volatility
across multiple crash episodes.

Second, in most states single-family permit counts per capita peaked in the 1970s. In sunbelt
states permitting continued on trend after the oil crises of the 1970s to meet demand from new
residents. The data also displays a boom in permitting in New Jersey and New York in the
1980s under Edward Koch’s mayorship of New York City, during which zoning restrictions
were relaxed in dense parts of Manhattan in response to the “construction drought of the
1970s."11 Somerville (2002) finds in Canadian permits data from 1972–1997 that 95% of permits
are exercised within three months and 99% of started single-family construction is completed
within 15 months. We update these numbers for the U.S. by isolating permits filed for new
residential construction in the CoreLogic Building Permits data. In every year since 1990, over
80% of started residential buildings have been completed within 12 months of the permit being

9Imputations predominantly impact small places accounting for less than 1% of national permitting activity. For
this reason, the place tables are annual for all places in the U.S. and monthly for a subsample of roughly half of all
places. Under the current sampling scheme, the “certainty sample” of places with counts for each month consists of
places with an average of at least 6 or more permits in the last 3 years (Census Bureau, 2022).

10The Census BPS series from the FRED API also include imputed permits.

11See the NYC government’s history of the Midtown Development Project: https://www.nyc.gov/assets/
planning/download/pdf/about/city-planning-history/midtown_zoning.pdf.
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issued, with an average unconditional completion rate of 81% over that time. Permits for new
residential units are therefore a valid proxy for new housing supply at one to two-year horizons.
In Appendix E, we describe the CoreLogic data and report statistics about the relationship
between permitting, time-to-build, and housing supply.

Third, there has been a clear collapse in single-family permitting activity since the GFC, which
has only partially rebounded in some states. This collapse and non-recovery is more pronounced
in states with stringent regulatory restrictions on new housing development, such as the high
minimum lot size requirements in New England (Bronin, 2023; Song, 2024). Indeed, we find
in Section 6 that the Wharton Residential Land Use Regulatory Index alone produces a 22%
R2 at the state level and 36% R2 at the MSA level, and has a negative correlation with local
permits issued in the post-GFC period. Taken together, these facts demonstrate geographically
heterogeneous changes over time in new housing supply, and, through the lens of our model in
Section 2, heterogeneity in the usefulness of building permits as a signal to financial investors
about the strength of the macroeconomy.

3.3 Background on Local Permitting Process

Builders of new residential units in most U.S. jurisdictions are required to receive permit approval
and pay a permit filing fee before construction can begin. Records of permits are retained by a
local Building Department, City Planning Office, Zoning and Code Enforcement Office, or similar
entity. Many of the earliest codes governing new buildings in the U.S. date back to the colonial
era and are predicated on notions of preventing fire hazards or limited damages to neighboring
properties (Oster and Quigley, 1977). Data on features of historical building codes are scarce,
but President Lyndon B. Johnson’s National Commission on Urban Problems review of land use
regulation stated that, as of 1968, over half of all zoning decisions in Connecticut were handed
down since 1958 (American Society of Planning Officials, 1968). This increasing sophistication
of building codes coincides with the expansion of local governments’ legal abilities to regulate
building under the police power clause of the Tenth Amendment.12

More recently, local governments levy permit fees as a substitute for revenues from property
taxes (Altshuler and Gomez-Ibanez, 1993). Levies on new construction—including permit,
inspection, and certificate of occupancy fees—are referred to as “impact fees,” because
governments tie the fee schedule to the expected strain new development will place on the
jurisdiction’s ability to provide local public goods (e.g., traffic on roads might increase with
new housing). Permit fees in the modern era thus take the form of a Pigouvian tax.

Horton et al. (2024) map the prevalence and burdens imposed by permit fees on new
construction in recent years, documenting that virtually all counties with available permits data

12Glaeser et al. (2005) point to several watershed court cases, such as the U.S. Supreme Court case Nectow v. City of
Cambridge (1928) and Southern Burlington County N.A.A.C.P. v. Mount Laurel Township (1975), which prescribed limited
avenues for landowners to prevent local governments from restricting new development on their land.
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FIGURE 2. Building Permits Per 10,000 Inhabitants in U.S. States, 1961–2019
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Notes: The figure plots for each state the seasonally adjusted number of total private residential building permits
(black) and private single-family home permits (red) per 10,000 inhabitants filed in that state for a given year according
to the Census Building Permits Survey (1961–2019). The time series shows the evolution of building permit activity
relative to state population over six decades. Permit counts exclude those filed for public construction contracts. Series
are seasonally adjusted using the Census X-13 ARIMA-SEATS filter (cf. Appendix B.4). We start the sample at 1961M1,
since 1961 is the first year the survey follows its standard format. Grey-shaded areas indicate NBER-dated recessions.
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FIGURE 2. Building Permits Per 10,000 Inhabitants in U.S. States, 1961–2019 (Continued)
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Notes: The figure plots for each state the seasonally adjusted number of total private residential building permits
(black) and private single-family home permits (red) per 10,000 inhabitants filed in that state for a given year according
to the Census Building Permits Survey (1961–2019). The time series shows the evolution of building permit activity
relative to state population over six decades. Permit counts exclude those filed for public construction contracts. Series
are seasonally adjusted using the Census X-13 ARIMA-SEATS filter (cf. Appendix B.4). We start the sample at 1961M1,
since 1961 is the first year the survey follows its standard format. Grey-shaded areas indicate NBER-dated recessions.
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levy fees on permits for new single-family units, yet in the median U.S. county, the amount is
under 1% of forecasted construction costs. Hence, there are transaction costs to permitting, which
are relatively small for the majority of areas, but there is some variation in the cross-section,
with fees above 10% of project costs in the top decile of counties. Transaction costs prevent
indiscriminate permitting that would attenuate the informativeness of BPG, qs,t, as a signal to
informed traders in our model of financial markets.

3.4 Defining Building Permit Growth

Using our database of permits, we construct empirical analogs to aggregate permit valuations
Vs,t, aggregate permit counts Qs,t, and permit growth rates qs,t in our asymmetric information
model of Section 2. We focus on building permit growth (BPG) rather that levels due to
the non-stationarity of local building permits, confirmed by previous studies using state-level
permits (Stock and Watson, 2010; Strauss, 2013) but also by our own unit root tests applied to
longer time series and finer geographies. We define log local building permit growth (BPG)
based on permit values as:

vs,t+1 = ∆ log(Vs,t+1) (3.1)

Vs,t = Ps,t × Qs,t =
N

∑
i=1

pi,s,t (3.2)

where building permit value Vs,t depends on both the total quantity Qs,t of permits issued at time
t in geography s and how each permit i is valued at a price pi,s,t by investors at the time it gets
approved by the local government. Ps,t is an index capturing average value per permit. Permit
quantities depend on several factors, including demand for new properties and local supply-side
factors such as the availability of developable land and the stringency of land use regulations.
Our choice of geographic unit s is dictated by data availability over multiple boom-bust cycles
for each test of the four empirical predictions of the model in Section 2.

The fact that land values are not capitalized into extant building permit series is a limitation
of the data. While simple, the option value theory model in Section 2 illustrates that key
information about macroeconomic fundamentals is omitted by excluding land from valuing
building permits. There are several ways to value permits both at the level of the property
and local market. Valuation methods vary depending on how the data are collected. Most
permit time series attach a value based on versions of the replacement cost method. In Dun
& Bradstreet’s permit data, the valuations include additions, alterations, and repairs, but not
land prices (see, e.g., Dun’s Review, September 1935).

Modern Census data from the Survey of Construction or Building Permits Survey elicit similar
notions of permit value to Dun’s, with two main caveats. One is that there are 12 non-disclosure
states that outlaw direct reporting of dollar values tied to real estate transactions, including
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permits (Wall Street Journal, 2019).13 Another issue is that not all permits reported by a local
government authority pertain to entirely new builds on vacant land. For example, some
permits might refer to major property remodels where the budget could change over the project
timeframe due to input cost variability.14

We combat these issues with measuring BPG in valuation terms, vs,t+1 by merging in other
series capturing housing values. The Census disaggregates permits series into total quantities
and valuations, meaning that we can observe Qs,t for all geographic levels beginning from 1959.
We can therefore define BPG purely in terms of changes in quantities via:

qs,t+1 = ∆ log(Qs,t+1) (3.3)

For all states via the Zillow Home Value Index from 2000 onward and for 20 Case-Shiller MSAs
from 1990 onward, we can inflate up Qs,t using the relevant price index Ps,t to obtain Vs,t and
vs,t. Importantly, house price indices incorporate the value of structures and land, respectively
denoted Bi,s,t and Li,s,t in our model environment. We then compare our results computed using
qs,t and vs,t for the modern Census segment of our data and find that inflating up quantities
by a housing price index has little bearing on our cross-sectional results for predicting financial
market movements. This is unsurprising given that qs,t and vs,t have a correlation of over 99%
across all 50 states from 2000—2019 and across the 20 Case-Shiller MSAs from 1990–2019. Based
on this information and the relative ease with which investors can research and interpret permit
quantities, we consider qs,t as our main measure of BPG. We explore alternative deflators for
converting between permit quantities and valuations in Appendix B.6.

3.5 Supplemental Data Sources

To complement our building permit data, we use several additional data sources. For stock
market information, we use the CRSP Stock Database (1926–2019) accessed through WRDS,
including the CRSP/COMPUSTAT merge for firm-level accounting fundamentals. We use the
value-weighted CRSP index throughout our analysis. Our corporate bond market data come from
two sources: the Dow Jones Corporate Bond Total Return Index from Finaeon Global Financial
Data (1915–2019); and issue-level data from SDC Refinitiv (1990–2019). For housing price indices,
we use the S&P Case–Shiller Index (1988–2019) for 20 MSAs and the state-level Zillow Home
Value Index (2000–2019). We also download the underlying property-level microdata from the
Census Survey of Construction (SOC), which consists of a randomly stratified sample of executed

13Current non-disclosure states include Alaska, Idaho, Kansas, Louisiana, Mississippi, Missouri (some counties),
Montana, New Mexico, North Dakota, Texas, Utah, and Wyoming.

14In their official documentation, the Census Bureau cautions researchers against using their permit value series,
stating: “Because of the nature of the building permit application process, valuations may frequently differ from the true cost of
construction. Any attempt to use these figures for inter-area comparisons of construction volume must, at best, be made cautiously
and with broad reservations.” (Census Bureau, 2022)
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private permits on new residential construction. We use the SOC data to determine the extent
to which building permits translate to finished units.

Previous studies note that housing market indicators like permits might proxy for consumption
or wealth indicators (Ghent and Owyang, 2010). Building permits capture hiring in the
construction sector, which has a direct effect on local job growth and unemployment rates
(Strauss, 2013; Howard et al., 2024). We attempt to isolate the additional signal that permits
provide to informed investors on top of any other observable signs of local economic conditions
by controlling for state and metro area GDP and personal consumption expenditures (PCE)
compiled by the Bureau of Economic Analysis (BEA).15 We download quarterly county and
state-level employment statistics from the Quarterly Census of Employment and Wages (QCEW)
produced by the BLS.

In our firm-level tests, we use Dun & Bradstreet’s DUNS Marketing Identifier (1969–2019)
to match firms to their physical locations. Beyond plant-level locations, D&B provides data on
establishment-level employment and sales, which we use to apportion out each traded firm’s
exposure to building permit risk across location in our analyses at the individual securities
level. We crosswalk the DUNS id to the gvkey firm identifier in COMPUSTAT by matching the
parent company name strings across the two databases. This crosswalk allows us to obtain a
firm-level panel with sales and employment-share weighted building permit market exposure
measures matched to balance sheets and returns.

4 Empirical Strategies

Following Cortes and Weidenmier (2019), we extract volatility from the resulting monthly BPG
series in equations (3.1) and (3.3) using GARCH models to compute one-period ahead conditional
volatility. We focus on the workhorse GARCH(1,1) model introduced by Bollerslev (1986), to
obtain local BPG volatility σBPG

s,t for a state or MSA s and BPG measure defined by xs,t ∈ {vs,t, qs,t}.

xs,t = θ0 + θ1 · xs,t−1 + εs,t, with εt ∼ N (0, (σBPG
s,t )2)

(σBPG
s,t )2 = α0 + α1 · ε2

s,t−1 + α2 · (σBPG
s,t−1)

2 s.t. αi > 0; α1 + α2 < 1
(4.1)

where xs,t is BPG as constructed from data on permits issued and proxies for market values of
newly constructed buildings, adjusted to capitalize land values (e.g., via housing price indices)
whenever possible. We estimate (4.1) using quasi-maximum likelihood (QMLE) methods. In
Appendix C we show robustness of our results to using other GARCH models to estimate
BPG conditional volatility, such as GJR-GARCH (Glosten et al., 1993) and exponential GARCH
(Nelson, 1991). In our simulation exercises, for most building permit series and time periods the,

15The BEA data can be downloaded at https://www.bea.gov/data/by-place-states-territories for states and
at https://www.bea.gov/data/by-place-county-metro-local for MSAs and counties.
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workhorse GARCH model exhibits less parameter instability while attaining similar convergence
rates to analogous GJR-GARCH and E-GARCH specifications.16

As a proof of concept, we plot in Figure 3 the time series of σBPG
t for total private residential

permits and total return volatility for stocks (Panels A and B) and corporate bonds (Panels B
and C). Following Schwert (1989), we define total return volatility σt as the monthly standard
deviation calculated from daily returns. Conditional BPG volatility spikes within a 6 month
lead relative to the stock and bond markets in 12 out of 15 NBER recessions. BPG and bond
total returns have lower average volatilities following the Savings & Loan Crisis of the late
1980s.17 Stock and Watson (2010) find that the decline in nationwide BPG and real volatility
(i.e., the Great Moderation) coincided with a convergence in mortgage rates across regions.
As we show in Section 5, our finding that BPG volatility predicts financial return volatility
holds longitudinally over the last one-hundred years even conditional on proxies for housing
demand—including the prewar period when mortgage credit was scarce—indicating that BPG
volatility is not merely a proxy for the leverage cycle.

Aggregate Time Series Analysis. Our baseline specification for testing for links between asset
market fluctuations and building permit volatility is the following time series regression:

σt = β0 + δt︸︷︷︸
seasonal
dummies

+
τ∗

∑
τ=1

βτ · σt−τ︸ ︷︷ ︸
autocorrelation

+
τ∗

∑
τ=1

βτ · σBPG
t−τ︸ ︷︷ ︸

U.S. BPG volatility

+ γ′ ·
p∗

∑
p=1

Xt−p︸ ︷︷ ︸
aggregate controls

+ εt, (4.2)

where σt is total return volatility for an asset class (e.g., stock or bond total returns), δt is a
set of quarterly or monthly dummies to strip out seasonality, and σBPG

s,t denotes one-period
conditional volatility for locality s, as obtained via the GARCH model in (4.1).18 We include
τ∗ lags of the dependent variable volatility and σBPG to account for serial autocorrelation.19

Aggregate controls in Xt include: the lagged corporate leverage ratio (Schwert, 1989; Cortes and
Weidenmier, 2019); population growth (Mankiw and Weil, 1989; Francke and Korevaar, 2023);

16Further, GARCH(1,1) converges for more building permit series across geographic areas and subperiods than
textbook GJR-GARCH and E-GARCH models.

17Average BPG volatility declines from 0.083 to 0.073 after the nationwide trend break in 1992M6, with a two-sided
t-stat on the difference of 9.40. We present results from applying Bai and Perron (1998) one-at-a-time break date tests
to the aggregate and local building permit series in Appendix D.1.

18Since we construct σBPG from seasonally-adjusted permits, further adjustments for seasonality by incorporating
either monthly or quarterly dummies into equation (4.2) has little quantitative impact on our results. In our baseline
specifications we include monthly dummies to account for possible cyclicality in asset return volatility arising from
quarterly earnings announcements.

19We select a lag order of τ∗ = 12 months to obtain comparable estimates to the literature (e.g., Schwert, 1989)
but consider Akaike (AIC) and Bayesian-selected criteria (BIC) τ∗. We also consider the optimal lag order selected by
allowing it to be asymmetric between σ and σBPG (Ozcicek and McMillin, 1999). In all cases we obtain τ∗

AIC = τ∗
BIC = 1.
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FIGURE 3. Conditional U.S. Aggregate BPG vs. Financial Market Volatility (1919 – 2022)

A. CRSP Stock Return Volatility (1919 – 1957) B. CRSP Stock Return Volatility (1961 – 2022)
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Notes: The left-hand axis in each panel plots conditional building permit growth volatility σBPG obtained by
estimating the GARCH(1,1) model in equation (4.1) over the series of seasonally adjusted total private residential
permits across the entire U.S. Panels A and C use the Dun’s Review sample, spanning 1919M1 – 1957M10, while Panels
B and D use the Census Building Permits Survey, covering 1961M1–2022M12. The right-hand axis in Panels A and B
plots CRSP total return volatility, while the right-hand axis in Panels C and D refers to total return volatility on the
Dow Jones corporate bond index. We compute CRSP and Dow return volatility as the monthly standard deviation
from daily total returns on the value-weighted index. Grey-shaded areas indicate NBER-dated recessions.
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household debt-service coverage ratio (Mian et al., 2017); growth in the industrial production
index; and Manela and Moreira’s (2017) news-implied volatility index (NVIX).

Geographic Cross-Sectional Time Series Analysis. A natural extension of equation (4.2)
involves replacing aggregate BPG volatility σBPG

t on the RHS with local BPG volatility σBPG
s,t

to test for heterogeneity in the informativeness of building permit movements across geography:

σt = β0 + δt︸︷︷︸
seasonal
dummies

+
τ∗

∑
τ=1

βτ · σt−τ︸ ︷︷ ︸
autocorrelation

+
τ∗

∑
τ=1

βs,τ · σBPG
s,t−τ︸ ︷︷ ︸

BPG volatility
for locality s

+ γ′
s ·

p∗

∑
p=1

Xs,t−p︸ ︷︷ ︸
local controls

+ εt (4.3)

where now the vector of controls Xs,t includes local economic factors within geographic unit s,
such as recent population, employment, and GDP growth. To the extent that such local economic
conditions are readily discernible to investors, failing to account for their influence on financial
markets could lead us to potentially ascribe too much predictability to BPG volatility.

Principal Component Analysis: Accounting for Cross-Regional Collinearity. We also
consider versions of (4.3) in which we include a subset of localities s ∈ S in a panel regression
or use principal component analysis (PCA) to account for collinearity across local real estate
markets. We test the hypothesis admitted by our model in Section 2 that βs,τ will strongly
predict future asset return volatility in areas of the country where building permits form
a more precise signal to investors about the strength of the local economy. Such areas are
ones with fewer regulatory restrictions but more land availability constraints which keep BPG
volatility relatively low, on average.

Firm-Level Analysis: The Cross-Section of Equity and Bond Volatility. To examine the
relationship between firms’ exposure to local construction cycles and their own-securities
return volatility, we extend our time series analysis in (4.2) and (4.3 to the cross-sections
of equities and bonds:

σj,t = δt + ηj +

τ∗
j

∑
τ=1

β j,τ · σj,t−τ︸ ︷︷ ︸
own autocorrelation

+

τ∗
j

∑
τ=1

φj,τ ×
(

∑
k∈J

ωk,t−τ−1 · σBPG
k,t−τ

)
︸ ︷︷ ︸

share-weighted exposure to BPG Vol

+ γ′ · Xj,t−1︸ ︷︷ ︸
firm-level controls

+ε j,t, (4.4)

where we include autoregressive terms σj,t−τ and a vector of controls Xj,t commonly used in the
literature (e.g., size/age bins, leverage ratios, EBITDA, Tobin’s Q). The φj,τ coefficients capture
how each firm j’s exposure to real estate market risk through its network of operating locations
J predicts its own asset return volatility. We use Dun & Bradstreet’s DUNS Marketing Identifier
data (1969–2019) to construct (lagged) plant-level shares ωk,t−1 based on sales or employment,
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resulting in a share-weighted average measure of each firm’s exposure to local BPG risk. This
Bartik-style shock with possibly time-varying weights on BPG volatility exposure allows us to
examine how firms’ connections to local housing cycles through their plant networks affect
their stock or bond return volatility.

5 Main Results: BPG Volatility Predicts Financial Cycles

According to our theoretical framework in Section 2, there are several channels through which
building permits could be a leading indicator for macroeconomic movements. In this section,
we first present longitudinal results using the full timespan of our data. We then probe possible
channels through the lens of historical episodes to help establish whether our σBPG factor is
a general predictor of financial boom-bust cycles throughout history regardless of the nature
of risks the economy faces at particular points in time.

5.1 Longitudinal Analysis of Building Permits’ Predictive Power

Table 1 presents results from estimating the aggregate on aggregate volatility specification
of equation (4.2) with a BIC-optimal lag of τ∗ = 1. In each specification, we regress total
value-weighted CRSP return volatility or total Dow Jones Corporate Bond return volatlity on
one-month lagged conditional BPG volatility, σBPG

t−1 . We perform this exercise in Panel A using all
private residential permits to construct BPG according to (3.3), and instead subset to permits for
new single-family home (SFH) units in Panel B. We focus on growth rates in permit quantities
rather than valuations to first establish the predictive power of permits independent of any
assumptions about how to value the permits at the point they are filed. Our sample covers
the entire U.S. over the run of the Census BPS, up to 2019M12.

Our broad conclusion from Table 1 is that over the full period 1960 – 2019, BPG volatility has
strong predictability for both equity return and corporate bond return volatility, even conditional
on a host of macroeconomic factors which might simultaneously drive asset market fluctuations
and investors’ appetite for developing real estate.20 Stock volatility is more predictable around
the Great Recession period but the reverse is true for bonds. Incremental R2 is very high for
corporate bonds but weaker for equities over the full sample. The R2 improves to 16% for CRSP
around the GFC period (2000-19), even without including the vector of controls.21

20Several of our macro control variables are only available at a lower frequency than the monthly permits data.
With month fixed effects included in every specification, the results are virtually identical regardless of whether we
choose a lag order to reflect the frequency at which a low-frequency control variable updates (e.g. include DSCRt−4
instead of DSCRt−1 to reflect the quarterly frequency) or linearly interpolate between each updated value.

21Note that since we already seasonally adjust the permits data and there is little monthly seasonality in stock
or bond returns on the aggregate index, almost all of this explanatory power is coming from BPG volatility itself
rather than time fixed effects. For example, regressing post-2000 CRSP return volatility on only a full set of monthly
dummies results in an R2 of just 1.6%, with σBPG adding an incremental R2 of 14.4%.
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TABLE 1. Regressions of Asset Return Volatility on Nationwide U.S. BPG Volatility

A. Total Private Residential Units BPG Volatility

Asset Market: Equities Corporate Bonds

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

σBPG
t−1 0.058∗∗ 0.029∗∗∗ 0.036∗∗ 0.030∗∗∗ 0.107∗∗∗ 0.069∗∗∗ 0.035∗∗∗ 0.030∗∗∗ 0.024∗ 0.019∗∗

(1.97) (2.75) (2.53) (2.68) (3.58) (4.32) (3.18) (2.59) (1.84) (2.30)

Time sample 1960-19 1960-19 1980-19 1980-16 2000-16 1960-19 1960-19 1980-19 1980-16 2000-16

Monthly dummies
Lagged asset return vol.
PopGrowtht−p

Leveraget−p

DSCRt−p

IP Growtht−p

DisasterNVIXt−p

N 714 707 479 435 195 714 707 479 435 195
R2 0.049 0.478 0.461 0.470 0.613 0.139 0.358 0.437 0.428 0.541

B. Single-Family Units BPG Volatility

Asset Market: Equities Corporate Bonds

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

σBPG
t−1 0.033∗ 0.022∗∗∗ 0.026∗∗ 0.023∗∗ 0.063∗∗ 0.076∗∗∗ 0.044∗∗∗ 0.041∗∗∗ 0.038∗∗∗ 0.023∗∗∗

(1.75) (2.76) (2.55) (2.35) (1.97) (6.05) (4.95) (4.74) (4.00) (3.77)

Time sample 1960-19 1960-19 1980-19 1980-16 2000-16 1960-19 1960-19 1980-19 1980-16 2000-16

Monthly dummies
Lagged asset return vol.
PopGrowtht−p

Leveraget−p

DSCRt−p

IP Growtht−p

DisasterNVIXt−p

N 714 707 479 435 195 714 707 479 435 195
R2 0.031 0.476 0.458 0.467 0.594 0.201 0.379 0.454 0.446 0.539

Notes: The table presents estimates from equation (4.2) relating total return volatility to building permit growth (BPG)
volatility. In Panel A we use total private residential permits as the quantity measure Qs,t, but instead use permits
attached to single-family units in Panel B. We include in most specifications a set of controls for other macroeconomic
observables directly related to BPG volatility, which might also drive aggregate financial market volatility. PopGrowth
refers to the annual population growth rate from the Census. Leverage is the aggregate corporate leverage ratio
based on firms’ annual filings in COMPUSTAT, computed as the sum of long-term debts (dltt) and debts in current
liabilities (dlc), divided by total stockholders’ equity (seq). DSCR is the quarterly household debt service coverage
ratio from the Federal Reserve, defined as household debt service payments as a fraction of disposable income.
IPGrowth is the month-on-month growth rate in the industrial production index (INDPRO). In some specifications,
we add the natural disaster component of the News Implied Volatility Index (NVIX) of Manela and Moreira (2017).
We include a BIC-optimal number of lags for each specification with control variables, for which we obtain a lag
order of p = 1. The time sample varies depending on the data availability of covariates, with DSCR available starting
in 1980, and the NVIX available only up to 2016. t-statistics obtained from Newey–West standard errors where we
select for each specification the minimum lag order such that the estimator for the covariance matrix is consistent.
***p < 0.01, **p < 0.05, *p < 0.1.

27



Building permits for new SFHs appear less closely linked to equities than to corporate bonds.
The opposite is true for total private residential units, which includes permits for both SFHs and
multi-family housing (MFH) units. The estimated elasticity for equities is roughly 40% greater
in the specifications with the full set of controls when we use this total BPG volatility measure.
From an investor’s perspective, there are tradeoffs to acting on signals from the SFH vs. MFH
market. Income-generating properties behave more like financial assets than single-family homes,
because rental cash flows can be discounted to produce a valuation, whereas single-family
homes are valued in an hedonic fashion to impute the unobserved dividends consumed by
owner-occupiers. New multi-family properties may contain more soft information about local
economies to the extent that they attract institutional investors who can develop units at scale
(Gurun et al., 2023). Larger properties (i.e., those with at least 5 units) are more likely to be highly
levered with floating rate debt (Glancy et al., 2023), leading to more volatility since developers’
appetites will ebb and flow with interest rate conditions (Glancy and Kurtzman, 2022). Indeed,
the average value of σBPG

US,t for MFH permits is 12.0%, compared to 7.6% for SFH permits.22

However, some of the increased volatility arising from MFH permits may be noise, as it
captures behavioral responses to idiosyncratic local regulatory changes rather than beliefs
about economic fundamentals. There are clear spikes in MFH or total permits filed in months
corresponding to the state’s tax year end date, even after plotting the seasonally adjusted
permit counts in Figure B.3. Developers filing permits to lock in preferential property tax
incentives explains these anomalies.23 Since it is more difficult to separate signal from noise
in the MFH segment of the market, we use SFH BPG volatility as our preferred measure in
empirical tests using the post-1960s data.24

Figure 4 decomposes the aggregate predictability by state and at short (1-month) vs.
medium-run (12-month) horizons, according to equation (4.3). Each regression in the figure
includes monthly dummies, σBPG

t−1 , and one-month lagged asset return volatility, but no controls.25

A clear picture emerges of a small number of states, particularly Florida and Georgia, driving
the predictability of BPG across both asset markets. This heterogeneity in the loadings is an
empirical prediction of our asymmetric information framework, whereby the predictive power
of building permits depends on the extent to which local housing supply constraints bind. The

22Moreover, due to the high unconditional volatility in multi-family permits, our GARCH specification in (4.1)
applied to multi-family BPG only converges for 31 out of the 50 states plus the aggregate U.S.

23For instance, we observe a large spike in multi-family permits (which is included in the total permits series in
Figure B.3) in California on the eve of Proposition 13, which passed in June 1978 and set property tax assessment
limits indexed to a 1976 fiscal base year value. Similarly, there are large spikes in multi-family permits in New York
City in December 2007 and December 2015 before pre-announced rollbacks of the 421a property tax exemption which
created incentives for developers to file permits to lock in more generous tax abatements (Soltas, 2022).

24From the perspective of building coherent long-run time series, Census total residential permits correspond better
to the composition of permits surveyed by Dun’s Review during the pre-1960s time period.

25In all regressions, we obtain nearly identical loadings on σBPG if we instead interact the autocorrelation return
σt−1 with a set of monthly dummies to account for the seasonality in the predictability of lagged stock and bond
returns (Ogden, 2003; Heston and Sadka, 2008).
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figure reinforces the conclusions from Table 1 by showing that BPG volatility is a stronger signal
for the bond market over the 60-year time period in the cross-section of states as well as for the
aggregate U.S. In Appendix D.4, we reproduce the same figure showing the predictability of
BPG volatility conditional on proxies for local housing demand, including state-level corporate
leverage and population growth.

Predictability grows in magnitude as we move from the short-run to the medium-run, with
some non-linearities present when comparing cumulative loadings over the 1-month vs. 6-month
horizons (unpictured). However, due to large confidence interval bands, particularly for stocks,
we cannot statistically distinguish the signals offered by most states from each other.26 We show
that our results in Figure 4 are stronger and more precisely estimated for both the entire U.S. and
the cross-section of states—while largely preserving the ordinal ranking of predictability of BPG
volatility across states—when we use GJR-GARCH instead of the more standard GARCH(1,1)
specification in Equation (4.1). Appendix C.3 documents that using GJR-GARCH addresses the
skewness of the distribution of monthly building permit growth observations. The extent of
this skewness varies across states and time periods; we fail to reject the null of a symmetric
BPG distribution for the aggregate U.S. in the post-1960s period for either overall residential
permits or SFH permits. We therefore face a tradeoff between the stability and convergence
properties of GARCH(1,1) for smaller states and maintaining the precision of our estimates
for states with large swings in permitting activity.

What explains the stronger predictability of BPG volatility for corporate bonds relative to stock
volatility over the full modern sample time period? One possibility is that bond returns are
systematically more predictable since they are non-callable and offer fixed coupon payments.
We indirectly test the role of cash flow predictability in Appendix D.3 by decomposing CRSP
total returns into the capital gain vs. dividend components (i.e., by taking the difference between
vwretd and the ex-dividend total return index vwretx), computing stock dividend volatility,
and then estimating analogous regressions to those in Table 1. We find that BPG volatility
is a better predictor of dividend volatility, in an R2 sense, than total return volatility since
1960. However, the opposite is true in the post-2000s period, during which dividends were
less volatile. Consistent with our Grossman-Stiglitz modeling framework in Section 2, BPG
volatility works well at forecasting dividend volatility, particularly during times when the cash
flow risk component of returns dominates.

26We use Newey and West (1987) standard errors in all specifications pictured in the figure and hereafter, as we
find the Newey-West estimator delivers t-statistics which are more conservative, on average, than those obtained
via bootstrapping. We obtain more precisely estimated coefficients if in our GARCH models (4.1) we impose errors
following a t-stat distribution instead of a Gaussian one.
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5.2 The Great Depression and Postwar Boom

The Great Depression is a pivotal episode in macroeconomic and financial history, with stock
market volatility reaching an unprecedented 60% per annum—two to three times higher than
any other period in American financial history (Schwert, 1989). Cortes and Weidenmier (2019)
show that building permit growth volatility and financial leverage help rationalize such high
degrees of volatility in an incremental R-squared sense.

In this subsection, we extend and enhance the findings of Cortes and Weidenmier (2019) in
several ways. Most notably, while Cortes and Weidenmier (2019) focused on Schwert’s (1989)
Depression volatility puzzle period (i.e., 1928–1938), our study spans a much longer timeframe.
Our data cover the period from 1919 to 1957, spanning nearly four decades, including the
Roaring Twenties, the Great Depression, World War II, and the early post-war boom. This
expanded dataset allows us to gain statistical power by examining the relationship between
building permit growth volatility and asset return volatility across multiple economic cycles
and regimes. Second, our analysis provides a more comprehensive understanding of this
relationship over time for both stocks and corporate bonds rather than just stocks. Furthermore,
our application of modern Census X-13 ARIMA-SEATS seasonal adjustment methods provides
a robust treatment of seasonality.

Another explanation for the predictive power of building permits in aggregate and in the
geographic cross-section is that local land use regulation ebbs and flows with macroeconomic
sentiment, influencing the success probability f (Xs,t), as well as Ls,t+1, through the expected
future cash flows generated by the property. Imposing supply constraints raises the value of
holding permitted land Ls,t+1, contributing to price growth during periods of high property
demand (Glaeser et al., 2005).27 In the model of Section 2, we assume local residential supply
restrictions are static. Studying the historical period in which zoning and permitting systems
were far less complex (Fischel, 2004; Shertzer et al., 2022) is therefore useful for trying to
rule out shifts in land use constraints as the main driver of the predictive power of our BPG
volatility factor across crisis episodes.

Figure 5 illustrates the predictive power of building permit growth volatility for both stock
(Panel A) and bond (Panel B) return volatility in the U.S. and across different states over the
complete Dun’s Review sample period, 1919 – 1957. We adopt specifications identical to those in
Figure 4. The figure reveals significant heterogeneity in predictability across states, with some
showing strong positive relationships (e.g., Wisconsin, Nebraska, Ohio, Indiana, and Florida)
and others showing negative or insignificant relationships.

Notably, Florida BPG volatility exhibits strong cumulative predictability at the 12-month
horizon for both asset classes, particularly if we re-estimate Equation (4.3) restricting to dates

27Comparing the earlier version of the Wharton Residential Land Use Regulatory Index from 2006 (Gyourko et al.,
2008) to the 2018 version (Gyourko et al., 2021), there is little change in the ranking of states and 44 CBSAs.
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FIGURE 5. Predictability of Building Permit Growth Volatility for Asset Return Volatility (1919 – 1957)

A. Stocks: 12−Month Horizon B. Bonds: 12−Month Horizon
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Notes: This figure shows the sum of coefficients for building permit growth (BPG) volatility predicting
stock and bond return volatility over a 12-month horizon, using the sample of permit valuations from
Dun’s Review. We estimate versions of equation (4.2) separately for each state s with τ = 12 lags of
σBPGs, t and report the sum of the estimated lagged coefficients ∑12

τ=1 β̂s,τ . The sample period is 1919M1
to 1957M10. Panel A shows results for stock return volatility, while Panel B shows results for bond
return volatility. Results are shown for the United States at the top of each panel, then the United
States excluding New York State, and then individual states. Blue (red) bars indicate positive (negative)
coefficients. Solid error bars represent statistical significance at the 10% level, while dashed lines represent
insignificant coefficients. We truncate the x-axis in Panel A to allow better visualization of the estimates
and their confidence intervals. We plot 90% confidence intervals obtained via standard errors to correct
for autocorrelation and heteroskedasticity, selecting the minimum lag order such that the estimator for the
covariance matrix is consistent (Newey and West, 1987). See Appendix B.1 for details on how we aggregate
the Dun’s Review data into state-level permits series.
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within five years of the onset of the Great Depression. Narrative evidence points to the colossal
magnitude of the Florida Land Boom of the 1920s, although no land price indices exist (White,
2009, 2014). Total building permits issued in Miami peaked at $65.7 million in 1925M3 and
plummeted to $1.2 million (both in real 2012 dollars) on the eve of the 1928 Okeechobee
Hurricane, the deadliest in Florida’s history. More than 20 million lots were being developed for
sale in Florida over the boom (Knowlton, 2020, p. xiv), a scale which could have accommodated
half of the entire United States population planning to move to Florida (Calomiris and Jaremski,
2023, p. 2). The Florida land boom was predicated on the development of land made newly
accessible by expansions of railroad networks along the Eastern Seaboard in the early twentieth
century (Turner, 2015, pp. 90–113). Our model predicts that a context like 1920s Florida in
which there are minimal regulatory restrictions on real estate development is one in which BPG
volatility is a strong predictor of asset market volatility.

Figure 5 also highlights the importance of considering the United States both with and without
New York, demonstrating how a single state with significant economic weight can influence
national-level results. This nuanced approach provides a more comprehensive view of the
relationship between building permit volatility and asset return volatility across the country.
We discuss how we aggregate the Dun’s permits data from cities to states in Appendix B.1. Our
results for the aggregate predictability of BPG volatility in the earlier Dun’s period hold even
if we winsorize permit valuations at the tails within each state before aggregating the series
from cities up to states and then up to the national level.

Analogously to Table 1 for the modern time period, we estimate aggregate BPG volatility
on aggregate return volatility regressions for the Dun’s sample period in Table 2. In line with
Cortes and Weidenmier (2019), Panel A of Table 2 shows that the one-month predictability
of BPG volatility for stock volatility is stronger around the Great Depression era. A novel
finding shown by Panel B is that the strong predictability of BPG is present for both stock and
bond volatility—even conditional on controls for market leverage, population growth, industrial
production growth, and the NVIX (e.g., the war and natural disaster components). Both panels
indicate that the predictability remains quantitatively and qualitatively significant over the full
sample from 1919 to 1957. This suggests that our findings for the modern period are not
specific to recent developments in the U.S. corporate or household lending environment, or
contingent on the definition of BPG volatility.28

5.3 The 2008 Global Financial Crisis

In this section, we find that the information embedded in building permits contains soft
information about the timing of the onset and severity of the Financial Crisis, rather than
simply proxying for a loosening of mortgage credit access for households during that period.

28In contrast to the Census Building Permits Survey, Dun’s Review reports building permit valuations rather than
counts, and includes both income-generating properties and single-family homes.
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TABLE 2. Regressions of Asset Return Volatility on Nationwide U.S. BPG Volatility: Pre-1960s Sample

A. Stock Return Volatility and BPG Volatility (1926 – 1957)

Sample Period: Full Time Period Great Depression Era

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

σBPG
t−1 0.036∗∗ 0.013∗∗ 0.013∗∗ 0.013∗∗ 0.017∗∗∗ 0.037∗∗ 0.020∗∗∗ 0.021∗∗∗ 0.021∗∗∗ 0.020∗∗∗

(2.52) (2.37) (2.39) (2.41) (2.94) (2.46) (2.85) (3.18) (3.13) (3.00)

Time sample 1926-57 1926-57 1926-57 1926-57 1926-57 1928-38 1928-38 1928-38 1928-38 1928-38

Monthly dummies
Lagged asset return vol.
PopGrowtht−p

MktLeveraget−p

IPGrowtht−p

DisasterNVIXt−p

WarNVIXt−p

N 381 381 381 381 381 131 131 131 131 131
R2 0.102 0.618 0.618 0.620 0.631 0.147 0.613 0.614 0.615 0.629

B. Bond Return Volatility and BPG Volatility (1919 – 1957)

Sample Period: Full Time Period Great Depression Era

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

σBPG
t−1 0.021∗∗∗ 0.009∗∗ 0.009∗∗ 0.009∗∗ 0.011∗∗ 0.030∗∗∗ 0.017∗∗ 0.021∗∗∗ 0.021∗∗∗ 0.021∗∗∗

(2.72) (2.11) (2.10) (2.12) (2.54) (3.31) (2.39) (3.02) (2.95) (2.97)

Time sample 1919-57 1925-57 1925-57 1925-57 1925-57 1928-38 1928-38 1928-38 1928-38 1928-38

Monthly dummies
Lagged asset return vol.
PopGrowtht−p

MktLeveraget−p

IPGrowtht−p

DisasterNVIXt−p

WarNVIXt−p

N 465 393 393 393 393 131 131 131 131 131
R2 0.090 0.515 0.516 0.518 0.525 0.142 0.527 0.541 0.542 0.543

Notes: The table presents estimates from equation (4.2) relating total return volatility to building permit growth (BPG)
volatility over the sample of permit valuations from Dun’s Review. In Panel A we present results using stock return
volatility as the outcome, and instead examine bond return volatility in Panel B. We include in most specifications
a set of controls for other macroeconomic observables directly related to BPG volatility, which might also drive
aggregate financial market volatility and are available historically. PopGrowth refers to the annual population growth
rate from the Census. MktLeverage is the aggregate market leverage ratio (i.e. debt-to-capital ratio) for CRSP firms
from Graham et al. (2015). IPGrowth is the month-on-month growth rate in the industrial production index (INDPRO).
In some specifications, we add the natural disaster and war components of the News Implied Volatility Index (NVIX)
of Manela and Moreira (2017). We include a BIC-optimal number of lags for each specification with control variables,
for which we obtain a lag order of p = 1. The time sample varies depending on the data availability of covariates;
for instance, MktLeverage is available starting in 1925. t-statistics obtained from Newey–West standard errors where
we select for each specification the minimum lag order such that the estimator for the covariance matrix is consistent.
***p < 0.01, **p < 0.05, *p < 0.1.
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Another reason to study the modern time period is that monthly frequency house price indices
are available for states from the 2000s onward, and for the largest MSAs starting in the late
1980s.29 This allows us to capitalize land values into permits at the same frequency as the
permits data. Based on our option value theory framework in Section 2, the expected value
of the exercised permitting option, Et[V∗

i,s,t+1], is a function of the completed building, plus the
land evaluated at its highest and best use. To the extent that construction costs are divorced
from land values, relying on project cost measures reported with permit filings may reduce the
informativeness of value-based BPG volatility as a signal.

Figure 6 displays the results from estimating 12-month lag versions of equation (4.2) separately
by state and by MSA over the 2000s boom-bust cycle. Panels A and B do this for stock return
volatility while Panels C and D use total bond return volatility as the outcome. For both
bonds and equities the cumulative loadings of ∑τ∗

τ=1 β̂s,τ are greater for states which had larger
shares of mortgages classified as subprime during the 2000s boom, as based on the geographic
subprime ranking of Mayer and Pence (2008).30 Seven out of the top ten states, as ranked
by their cumulative predictability of future stock market volatility, are also top ten subprime
loan states. Similarly, all 20 MSAs in the Case-Shiller set of MSA-level indices are ranked in
the top 60 by subprime loan activity, and half of these have cumulative loadings which are
statistically significant at the 90% level. The ordering of states and MSAs by their cumulative
loadings is similar across both asset classes.

We isolate via PCA the time series of a “subprime” factor suggested by the results of Figure 6.
This factor appears as the first principal component (PC) in the time series plotted in Figure 7,
and it alone accounts for 24% of the variation in σBPG

s,t .31 The subprime factor jumps in lock-step
with several key events of the Great Recession: the Bear Stearns failure (March 2008), the Lehman
Brothers bankruptcy (September 2008), the NBER recession declaration (December 2008), and
the peak volume of foreclosure auction sales in summer 2010 (Fout et al., 2017). Reassuringly,
the subprime factor remains stable and negatively contributes to overall σBPG

s,t during the 2001
recession, which was widely viewed as the result of the dot-com crash (Kliesen, 2003), and
therefore unrelated to the strength of the real estate sector.

29Price indices from the FHFA are available at all geographies from 1975 onward, but only at quarterly frequency.
The Freddie Mac House Price Index—the underlying data of which forms the basis for the FHFA indices—is available
at monthly frequency for states and CBSAs starting in 1975, but relies on refinancing appraisal values. The need
to match geographies and the sample of single-family homes across datasets guides our choice of indices for the
post-2000 period.

30Mayer and Pence (2008) define their ranking in terms of the fraction of residential single-family and 2-4 unit
multi-family loans within a geography which are included in a subprime mortgage pool as of 2005.

31The seven components with eigenvalues greater than one together account for 63% of the variation in σBPG
s,t . We

also consider methods for selecting factors which are robust to the “weak factor problem” (Kelly and Xiu, 2023).
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FIGURE 6. 12-Month Predictability of Permit Value Growth Volatility around the Global Financial Crisis

A. Stock Return Volatility: States B. Stock Return Volatility: MSAs
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Notes: We estimate versions of equation (4.2) separately for each locality s with τ∗ = 12 lags of σBPG
s,t and report

the sum of the estimated lagged coefficients ∑τ∗

τ=1 β̂s,τ . We truncate the y-axis in Panels B and D to allow better
visualization of the estimates and their confidence intervals. Our sample period in each specification is 2000M1 to
2019M12, for which Zillow price indices are available for each state and for each MSA included in the S&P CoreLogic
Case-Shiller home price indices. We use the Zillow single-family residences indices (excluding condos and co-ops) to
conform to the sampling conventions of the Case-Shiller indices. We use permits attached to single-family units as the
quantity measure Qs,t in (3.2). Panels A and C perform this exercise for the top 20 states according to the Mayer and
Pence (2008) subprime loan share ranking, while Panels B and D perform this exercise for the 20 Case-Shiller MSAs.
We use CRSP stock return volatility as the outcome in the top two panels, and total return volatility of the Dow Jones
Corporate Bond Index in the bottom two panels. We plot 90% confidence intervals obtained via standard errors to
correct for autocorrelation and heteroskedasticity, selecting the minimum lag order such that the estimator for the
covariance matrix is consistent (Newey and West, 1987).
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FIGURE 7. Principal Components of BPG Volatility around the Global Financial Crisis
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Notes: The figure plots the time series of principal components of state-level (Panel A) and MSA-level (Panel B)
monthly building permit growth volatility with an eigenvalue greater than unity. Monthly building permit growth
volatility is defined by σBPG

s,t in equation (4.1). Our sample in Panel A includes the top 20 states in the Mayer and
Pence (2008) ranking of states by their 2005 subprime loan share. We identify the subprime factor even if we pool all
47 states with sufficient permit volumes to estimate our GARCH models. In Panel B, we repeat the exercise with σBPG

s,t
for the 20 Case-Shiller MSAs. Grey-shaded areas indicate NBER-dated recessions.
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TABLE 3. Regressions of Principal Components of Permit Value Growth Volatility on Return Volatility

Asset Market: Equities Corporate Bonds

(1) (2) (3) (4) (5) (6) (7) (8)

PC(1)
t−1 [“subprime” factor] 0.0012∗∗∗ 0.0003∗∗ 0.0003∗∗ 0.0003∗∗ 0.0003∗∗∗ 0.0001∗∗∗ 0.0001∗∗∗ 0.0001∗∗∗

(2.78) (2.09) (2.06) (2.27) (4.45) (2.51) (2.44) (2.64)

PC(2)
t−1 −0.0003 −0.0003 −0.0001 −0.0001

(1.41) (1.35) (1.54) (1.63)

PC(3)
t−1 0.0002 0.0001

(0.82) (1.36)

PC(4)
t−1 0.0001 0.0000

(0.28) (0.55)

PC(5)
t−1 −0.0002 −0.0001

(0.77) (1.47)

PC(6)
t−1 0.0001 0.0001

(0.53) 1.10

PC(7)
t−1 0.0003 −0.0001

(0.99) (1.12)

Sample period 2000–2019 2000–2019 2000–2019 2000–2019 2000–2019 2000–2019 2000–2019 2000–2019
Monthly dummies
Lagged asset return vol.

R2 0.173 0.563 0.565 0.569 0.202 0.488 0.493 0.504
N 239 239 239 239 239 239 239 239

Notes: The table displays results from estimating regressions of the form in equation (4.2), but with just one lag for
each of the principal components plotted in Figure 7 to avoid collinearity. Columns (1) to (3) use CRSP total stock
return volatility as the outcome, while Columns (4) to (6) use Dow Jones Corporate Bond Index total return volatility
as the outcome. Our sample period is 2000M1 to 2019M12, for which Zillow price indices are available for each state.
Each regression includes a full set of month dummies to strip out seasonality. All columns with the exception of (1)
and (5) include a one-month lag of asset return volatility to account for serial autocorrelation. t-statistics obtained
from Newey-West standard errors where we select the minimum lag order such that the estimator for the covariance
matrix is consistent. ***p < 0.01, **p < 0.05, *p < 0.1.

In Table 3 we regress stock market total return and Dow Jones Corporate Bond Index total
return volatility σt on one-month lagged PCs.32 For both asset classes, the subprime factor
is the only factor which exhibits a robust and statistically significant relationship with return
volatility, regardless of the inclusion of the other principal components.33 Our results around
the Great Recession period suggest that speculation explains heterogeneity in the geographic
cross-section where corporate exposure to subprime loans or household leverage does not.
Chinco and Mayer (2015) show that speculative house purchases by out-of-town buyers were
the highest in Las Vegas, at 11% of sales, while that city’s subprime loan rank is only #10.

32Given that the objective of PCA is to extract linearly independent factors, we restrict to one-month lags. Including
additional lags of the contemporaneous PCs would obscure the economic interpretation, because one PC might lead
a combination of the other PCs.

33The first principal component (i.e. our “subprime” factor) has similar time series characteristics whether we run
PCA at the state level, as pictured in Figure 7, or at the MSA level using the Case-Shiller set of MSAs.
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Importantly, in Las Vegas Case-Shiller single-family house prices peaked in April 2006, well
before the October 2008 stock market crash. In contrast, cities like Miami (subprime loan
rank #6), where speculative transactions comprised only 5% of total sales, prices continued
to increase up until the Lehman failure.

After conducting a battery of robustness checks with different lag orders, we find that
around the subprime episode the loading on σBPG for Las Vegas (and Nevada) is always
statistically significant at the 99% level, pointing to other determinants Xs,t in the valuation
model given by (2.1)–(2.3). Out-of-town speculators from the North buying in cash were
an important source of price momentum in the 1920s Florida boom (Knowlton, 2020, pp.
176-177); only 40% of owner-occupied homes were mortgage-financed in 1920, with much
higher average downpayments than today (Fishback et al., 2013, pp. 10-11). The predictability of
BPG volatility across episodes and in pockets of the geographic cross-section where household
and corporate leverage is relatively unimportant points to mechanisms highlighted in our
theoretical framework, whereby building permits summarize investors’ beliefs about local
economic fundamentals in a way that is not perfectly collinear with build-ups in credit.

To offer further evidence of the mechanisms through which fluctuations in local permitting
activity influence financial markets, we show that firms differentially exposed to BPG volatility
around the Great Recession based on the location of their operations experience greater
fluctuations in their returns. We estimate the shift-share version of our specification at the
individual stock level from equation (4.4) and report the results in Table 4. The thought
experiment underlying this specification is to compare monthly return volatility of firms with a
network of operations in local markets which have larger vs. smaller recent changes in residential
permits filed. To measure each stock’s exposure, we take a weighted average of state-level
BPG volatility, σBPG

j,t ≡ ∑k∈J ωk,t−τ−1 · σBPG
k,t−τ, for firm j in month t. We use ex ante notions

of firm state-level locations k for the sales or employment-based weights ωk,t−τ−1 to account
for the possibility that firms may shift their operations to less-exposed parts of the country
due to either supply chain risks or reduction in local demand picked up at high frequency
by σBPG (Giroud and Mueller, 2019).

Table 4 documents that firms physically located in markets with sharper jumps in permitting
activity in recent months experience greater own-stock return volatility; this is true regardless
of whether we use employment or sales-based weights to apportion firms’ BPG risk across
locations. While we lack data on firm locations prior to 1989, over the last three decades, this
relationship between BPG volatility and return volatility is driven by events around the Global
Financial Crisis, as shown by columns (5) and (9), which restrict to a tighter window around
2008. The relationship is robust to autocorrelation in returns, seasonality, and ex ante controls for
corporate fundamentals, including firm size, age, EBITDA, Tobin’s Q, and the leverage ratio. The
pass-through of building risk to return volatility is cumulative over longer time horizons, with
the elasticity doubling from the one-month to the twelve-month horizon of BPG risk exposure.
Overall, examining the stock cross-section points to corrections in building activity as a harbinger
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TABLE 4. Predictability of BPG Volatility in the Cross-Section of Equities

(1) (2) (3) (4) (5) (6) (7) (8) (9)

σBPG
j,t−1 0.0046∗∗ 0.0029∗∗ 0.0031∗∗ 0.0019∗ 0.0048∗∗

(2.12) (2.26) (2.36) (1.70) (2.08)

∑12
τ=1 σBPG

j,t−τ 0.0079∗∗ 0.0057∗∗ 0.0062∗∗∗ 0.0100∗∗

(2.29) (2.04) (2.71) (2.43)

Time sample 1989-2019 1989-2019 1989-2019 1989-2019 2000-2019 1989-2019 1989-2019 1989-2019 2000-2019
Share weights ωk Emp Emp Emp Sales Emp Emp Emp Sales Emp

Monthly dummies
Firm FEs
Lagged asset return vol.
Firm controls

# of firms 2,067 2,066 1,865 1,865 1,280 1,865 1,713 1,713 1,174
N 157,040 156,907 135,808 135,808 73,832 132,342 117,345 117,345 65,348
Adj. R2 0.31 0.40 0.43 0.43 0.35 0.33 0.42 0.42 0.35

Notes: The table displays results from estimating regressions of the form in equation (4.3), where the outcome
in each regression is total return volatility for a stock associated with company j appearing in the matched
CRSP/COMPUSTAT/DnB sample described in Section 3.5. We restrict attention to post-1989 DnB observations, since
the number of firms included in the dataset stabilizes in that year. Columns (4) and (8) use shares of sales across states
within each plant’s network, while all other columns use employment shares. All columns with the exception of (1)
and (6) include a one-month lag of asset return volatility to account for autocorrelation. The vector of firm controls
includes deciles of firm age based on the listing year and balance sheet size, and one-year lags of EBITDA, Tobin’s
Q, and the leverage ratio. We follow standard procedures in the corporate finance literature to construct EBITDA, the
Q ratio, and the leverage ratio from COMPUSTAT balance sheet items, winsorizing all items at ±5 × IQR. t-statistics
obtained from robust standard errors clustered by firm in parentheses. Clustering standard errors at the stock level
results in more conservative (i.e. wider) confidence intervals. ***p < 0.01, **p < 0.05, *p < 0.1.

of decline in local demand for a firm’s products. When aggregated up, individual firms’ exposure
to future declines in local demand translate to volatility in the overall asset market.

6 Discussion: Why Do Local Building Permits Matter for

Financial Market Fluctuations?

Our results demonstrate that fluctuations in local building permit quantities predict stock and
bond return movements at short and medium-run horizons both in terms of elasticities and
incremental R-squared. This finding persists across recession episodes, including during time
periods when credit markets were less integrated and mortgages were less common or required
households to make large downpayments. Further, the aggregate predictability of building
permit growth (BPG) volatility holds conditional on measures of corporate and household
leverage and debt service ratios. Hence, the predictability of BPG volatility for asset market
fluctuations arises independently of the credit cycle documented in the literature (e.g., Schularick
and Taylor, 2012; Jordà et al., 2013; Müller and Verner, 2023).
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Our noisy rational expectations framework argues that BPG volatility should predict stock
and bond return movements because it encapsulates real estate investors’ beliefs about local
fundamentals which may be otherwise difficult for investors in risky asset markets to fully
observe at high frequency. For instance, state-level employment statistics from the Bureau of
Economic Analysis (BEA) are available at the quarterly frequency starting in 2018, yet only
at the annual frequency prior to 2018. Moreover, the data are released with lags as long as
a year and often revised in between release dates, indicating possible data quality issues as
local government offices report information in a staggered fashion. The Quarterly Census of
Employment and Wages (QCEW) produced by the BLS is subject to preliminary release lags
of five months after the end of a quarter.34

One threat to this interpretation is that local BPG volatility proxies for risks to corporate
assets and/or physical operations. This could be the case if, for example, natural hazards or
the potential outbreak of conflict result in a shutdown of building or reallocation of resources
from private towards public objectives. At an aggregate level, sources of physical risk to firms’
operations are contained within components of the NVIX of Manela and Moreira (2017), and the
aggregate predictability of BPG volatility remains intact conditional on these components.

Regulatory reforms or political upheavals are likely too slow moving to be able to explain
the predictive power of permit activity in our one-hundred year time series. The Wharton
Residential Land Use Regulatory Index (WRLURI), which is a survey-based measure of local
political constraints developers might face in seeking permits for new construction, has changed
little between the first version produced in 2006 (Gyourko et al., 2008) and the 2018 update
(Gyourko et al., 2021); there is virtually no change in the ranking of states and 44 CBSAs
included in the Wharton survey panel.

However, as our theoretical framework predicts, the signal-to-noise ratio of local BPG volatility
is related to local constraints on real estate development. Intuitively, if constraints on the number
of new permits are binding in jurisdiction s, then the signal qs,t = ∆ log Qs,t will be right-censored,
leading to many periods of negative or near-zero growth in permitting. Without conditioning on
any other observable information about the path of economic fundamentals in s, this reduces
the informativeness of BPG in s as a signal to investors, since it becomes more difficult to know
whether developers forecast reduced economic activity in s or if they would otherwise invest
in s but are unable to, and therefore decide to develop elsewhere.

To test this intuition, we use the first edition of the WRLURI, as the literature lacks measures
of local constraints on housing development going back further in time. Figure 8 shows a strong
negative correlation across states and MSAs between an area’s regulatory stringency, as measured
by the first Wharton Index, and per capita permit issuance during the post-Great Recession
boom from 2010 to 2019. The resulting correlation of the precision (inverse standard error) on the
one-month lagged loadings on σBPG plotted in Figure 4 for stocks with the WRLURI is −17%;

34See the QCEW release calendar over the last decade: https://www.bls.gov/cew/release-calendar.htm.
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FIGURE 8. Correlation between Stringency of Land Use Regulations and Cumulative Permit Volume

A. State-Level SFH Permits B. MSA-Level SFH Permits
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Notes: Each panel in the figure shows the relation between the Wharton Residential Land Use Regulatory Index
(WRLURI) on the x-axis and cumulative single-family home (SFH) building permits per capita issued during the
post-GFC recovery from 2010M1 to 2019M12. We scale each building permit series by 2010 decennial Census
population, downloaded from IPUMS. We normalize both variables to z-scores such that the trendline slope in each
plot represents the cross-sectional correlation. Panel A tabulates the data at the state-level, while Panel B tabulates at
the MSA level. We downloaded the state and MSA-level WRLURI from Tables 10 and 11 of Gyourko et al. (2008). Of
the 47 MSAs with a WRLURI value, we include the 35 MSAs with available data on permits from the Census BPS.

for bonds, this same correlation is −22%. For the precision on the cumulative 12-month lagged
loadings the correlations are −19% for stocks and −21% for bonds.

Bartik et al. (2024) show that the first and second principal components in their more recent
generative AI-based measure of the stringency of local land use regulation—corresponding to
regulatory complexity and exclusionary zoning (e.g., minimum lot sizes), respectively—are also
strongly negatively correlated with average residential permits filed at the municipality level
in the Census BPS during 2019 to 2023. This is true despite the fact that the WRLURI and
generative AI-based index have 33% correlation for the first PC but only 11% for the first PC
when computed against the overall Wharton Index.

Finally, in our specifications BPG volatility holds conditional on past local population growth.
This is important to the extent that permitting may reflect developers responding to realized
rather than forecasted demand for new housing units. In U.S. historical booms, uncertainty about
future demand stemming from the discovery of new territory results in over-development and
subsequent housing busts (Glaeser, 2013), even without overly optimistic beliefs. Overbuilding
risk is exemplified by recent reversals in house prices and rents in markets like Austin, Texas
(Wall Street Journal, 2024), which were initially major beneficiaries of migration induced by the
work-from-home boom. In Figure 9, we show that collapses in seasonally adjusted residential
permit volume in the latter half of 2022 precede similar dips in house prices among cities which
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FIGURE 9. Recent Permitting Activity in Top Cities for Work-From-Home Migration

A. Austin, TX B. Denver, CO
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Notes: Each panel plots for a metropolitan statistical area (MSA) seasonally adjusted residential permits from the
Census Building Permit Survey (left-hand y-axis) against the seasonally adjusted Zillow Home Value Index for
the mid-tercile of the price distribution of single-family homes (right-hand y-axis). We restrict the time period to
2015M1–2024M10 to focus on market corrections from net migration flows of work-from-home residents. Each of the
cities listed experienced large net migration of remote workers based on American Community Survey data, with
cities ordered by their rank in terms absolute net migration during the period 2020–2021.
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initially saw an influx of digital nomads, as mobile workers began to leave these cities amid
waning COVID-19 incidence and the rollout of return-to-office policies (Flynn et al., 2024).35

By examining the predictability of permitting activity, we focus on the very initial stage
of housing development. A possible source of uncertainty captured by our BPG factor is
uncertainty about the time between exercising of the option to build and the completion of
housing units. Time-to-plan lags in commercial real estate are long and variable across location,
averaging 1.5 years (Glancy et al., 2024), a finding we replicate for multi-family units. Gabriel
and Kung (2024) show in project approval microdata for Los Angeles that lengthy approval
times for new housing stifle housing supply. Consistent with those studies, we uncover a
cross-sectional pattern of low-BPG areas having greater predictability for financial volatility,
as well as more relaxed regulatory constraints on new building and reduced lags between
residential permitting and project completion.

7 Conclusion

We provide evidence that housing market activity, as measured by building permit growth (BPG)
volatility, strongly predicts future asset market volatility. By constructing a novel dataset of U.S.
historical local building permits from 1919 to 2019, we demonstrate that BPG volatility forecasts
stock and corporate bond market volatility, even after controlling for various factors such as
leverage ratios, natural disaster risk, and macroeconomic conditions. We find this predictive
power is particularly pronounced in more housing supply elastic regions, indicating that the
housing market’s influence on financial markets varies geographically. Our analysis also reveals
that during specific events like the Great Recession, BPG volatility in areas with high subprime
mortgage exposure exhibited stronger predictability for asset market volatility.

Our research contributes significantly to understanding the relationship between housing and
financial markets, introducing BPG volatility as a new monthly factor for forecasting stock and
corporate bond returns. We highlight the risk of overbuilding, showing how uncertainty about
future economic conditions captured by building permit volatility often results in excessive
development and subsequent housing busts. This insight offers valuable implications for
macroprudential policy, suggesting that policymakers should consider measures tailored towards
property developers to prevent runaway housing market booms. By providing a theoretical
framework that explains heterogeneity in the informativeness of building permits as a signal to
informed traders and creating a comprehensive longitudinal database of local permits, we open
new avenues for future research on local housing supply and its impact on financial markets.

35Qualitatively similar patterns showing a predictable dip in prices emerge if we replace the Zillow Home Value
Index in Figure 9 with the Zillow Observed Rent Index (ZORI). Each of the cities pictured also ranks highly in terms
of net migration flows based on tax filers (Berube, 2024).
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FIGURE B.1. Number of Cities Reporting Building Permits: 1919–1957.
16
4

16
4

16
4

16
4 17
8

18
0

18
6 20
0 21
5

21
5

21
5

21
5

21
5

21
5

21
5

21
5

21
5

21
5

21
5

21
5

21
5

21
5

21
5

21
5

21
5

21
5

21
5

21
5

21
5

21
5

21
5

21
5

21
5

21
5

21
5

21
7

21
7

21
7

21
7

19
19

19
21

19
23

19
25

19
27

19
29

19
31

19
33

19
35

19
37

19
39

19
41

19
43

19
45

19
47

19
49

19
51

19
53

19
55

19
57

Number of Cities Reporting Building Permits in Dun & Bradstreet's Publications (1919-1957)

Notes: This figure illustrates the number of cities reporting building permits each year in Dun & Bradstreet’s
publications. The initial count was 164 cities, remaining constant until 1923. Subsequently, significant increases
were observed: 177 cities in early 1923, rising to 180 by year-end, and further to 185-187 in 1925. In 1926, the count
reached 200, stabilizing at 215 from 1927. Two cities, Albuquerque, NM and Billings, MT were added in 1954M1 until
Dun’s Statistical Review ceased publication in 1957M10.

A Theoretical Framework: Derivations and Extensions

In this appendix, we derive the equilibrium conditions described in our theoretical setup in
Section 2, which embeds the option value theory of real estate development into the canonical
Grossman and Stiglitz (1980) framework.

B Details on Building Permit Data Construction

We offer further details on how we compile our longitudinal database of U.S. building permit
quantities and valuations (described in Section 3.1), including how we sourced the archival
reports, digitized the reports and conducted quality control, and how we adjusted the raw
series for seasonality.

B.1 Dun & Bradstreet’s Building Permits

Figure B.1 illustrates the number of cities reporting building permits each year from 1919 to
1957. The initial count was 164 cities, remaining constant until 1923. Subsequently, significant
increases were observed: 177 cities in early 1923, rising to 180 by year-end, and further to 185-187
in 1925. In 1926, the count reached 200, stabilizing at 215 from 1927 onward. Dashed lines
indicate years with changes in the number of reporting cities. Data labels above each bar show
the exact number of cities for each year. The final set of cities included in the Dun’s survey covers
44 states, with no cities surveyed in Alaska, Hawaii, Mississippi, Nevada, New Hampshire, and
Wyoming. Additionally, we drop New Mexico, Rhode Island, and Vermont from the panel, as
those states have incomplete time series for their cities.
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We aggregate the city-level Dun’s permit value totals up to the state level to use in our analysis.
Aggregating to the state level helps reduce the scope for measurement error arising from the
staggered entry of smaller cities into the survey and the fact that permits can be reported in a
lumpy fashion within the year, with different cities within each state operating on different filing
calendars due to differences in how the local town clerks report records to the Dun’s inspector.
We aggregate to the state level in two ways. First, we simply total all permit values across cities
within the same state-month; we plot this as the “unweighted" series in Figure B.2. Second, we
compute a weighted state-level total by weighting each city’s permit count in a given month in
proportion to its Census population relative to the statewide population in that year; we plot
this as the “population-weighted" series in Figure B.2. Since city-level population estimates are
missing for some cities in the earlier part of the sample, we cannot compute population-weighted
permit totals for 11 states, reducing the number of states in our panel to 30. However, population
weighting helps account for the fact that city boundaries may have shifted over time, particularly
during episodes of mass migration during the 1920s and the Dust Bowl period of the 1930s.

We emphasize a few broad patterns in the permits data for the pre-1960s period, as pictured
in Figure B.2. We plot the X-13 seasonally adjusted per capita series, where we run the X-13
ARIMA-SEATS filter separately for the population-weighted and unweighted series. We describe
the seasonal adjustment procedures in Appendix B.4. First, the data pick up the Roaring
1920s and postwar baby boom periods—with permits skyrocketing across most states during
those decades. Second, comparing the population-weighted vs. unweighted series reveals the
influence of inter-state migratory patterns. For instance, the wedge between the weighted and
unweighted series is largest in states like California and Florida, which experienced mass
migration during the 1930s Dust Bowl period (Baerlocher et al., 2024) and 1920s Florida Land
Boom (Knowlton, 2020; Calomiris and Jaremski, 2023), respectively. Third, there are idiosyncratic
spikes in permitting activity for some states which do not seem to correspond to any imminent
recession risk. A notable example of this is that New York State permits jump in 1957M1,
corresponding to the state legislature’s passage of an overhaul of the property tax system which
effectively increased tax rates levied on new commercial properties. For this reason, in our
analysis using the Dun’s data in Section 5.2, we winsorize the resulting BPG volatility series
at the 1% tails within each state to minimize the influence of such outliers in some regressions.

B.2 U.S. Census Bureau’s Building Permits Reports

Origins of Census BPS Reports (1959–1969). Our data from 1959 onward originate from
the Census Building Permit Survey (BPS). The BPS consists of four main series of interest
with publication dating back to May 1959 when the survey was piloted (note that the series
names have changed slightly over time):

1. C20: Housing Starts and Building Permits: Monthly counts of housing starts and
building permits filed for single-family and multi-family housing units and mobile homes.
The Census ceased this publication in 2001. Since the information in this series is not
geographically disaggregated and aggregated permit counts are provided in the C40 and
C42 reports (see description below), we do not use this series in our main analysis.

2. C40: Housing Authorized in Individual Permit-Issuing Places: Monthly permit counts
and valuations reported at the county and town level. See description below for more
details.
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3. C42: New Residential Construction Authorized in Permit-Issuing Places: Monthly permit
counts and valuations reported at the MSA and state level. See description below for more
details.

4. C50: Residential Alterations and Repairs: quarterly data on expenditures towards
residential additions, alternations, maintenance and repairs, and replacements. The
information in the C50 reports is sourced from household surveys and geographically
disaggregated only to the Census region level. We do not use this series in our main
analysis. The C50 series forms the basis for the Survey of Residential Alterations and
Repairs, which the Census discontinued in 2007Q4.1

Most of the data on permit counts and valuations used in our main analysis are covered by the
C40 and C42 series, depending on the month-year date and level of geography.

Post-1966, the Census also publishes annual summary statistics combining information from
the C40 and C42 series, with the C40 and C42 labels used interchangeably for these annual
reports. For example, the disclaimer from the 1968-1969 C40 summary statistics volume
informs us that:

“Data on housing authored in permit-issuing places are published by the Bureau of the
Census in two reports, C.40, Housing Authorized by Building Permits and Public Contracts:
Individual Places, which is sold by the Government Printing Office, and C.42, Housing
Authorized by Building Permits and Public Contracts: States and Selected Metropolitan
Statistical Areas, which is sold by the Bureau of the Census. The 1966 annual summaries
of these reports were consolidated and issued through the Government Printing Office under
the joint designation C.40/C.42.”

The Census collects each of the four series at a monthly frequency, and the naming convention
of the periodical follows the year-month. Example: C42-68-12 would contain state and MSA-level
residential building permits issued in December 1968. Each set of monthly tables is preceded by
a cover page that indicates the month and year in which the numbers pertain. This information
on the cover page needs to be used in place of the publication date, since the publication date
lags the actual information collection. The tables also sometimes, but not always, list the date
the information was reported in the title caption.

For most of the 1960s, the tables in C40 are disaggregated to a “place” (i.e., a “town”
or “county” level), whereas the C42 series contain state and MSA-level tables. The Census
cautions that the county and place-level statistics may not aggregate to match the state or
MSA-level totals due to rounding and the imputation procedures the Census employs to deal
with survey non-response in creating state or MSA-level totals. Under the consolidation between
the Government Printing Office and Census Bureau mentioned in the above quote, starting in
1969 the labeling reverted back to C40 being used to refer to the monthly reports for all three
levels of geography. The title of C40 was renamed to “Housing Authorized by Building Permits
and Public Contracts.” After 1969, the Census retired the C42 series label.

1Data for the modern Survey of Residential Alterations and Repairs can be found on the Census website: https:
//www.census.gov/construction/c50/c50index.html.

6

https://www.census.gov/construction/c50/c50index.html
https://www.census.gov/construction/c50/c50index.html


1970s BPS Series. Starting in 1970, the information previously contained in C42 was
incorporated into an expanded C40 series. As a result of this consolidation, the MSA-level tables
in the 1970s contain more MSAs than in the 1960s, since the totals were apparently cross-walked
between the “place” to the relevant MSA definition of the day. The state-level information is
contained in “Table 2. Region, Division State, and Puerto Rico: New Housing Units Authorized
in Permit-Issuing Places.” The MSA-level information is contained in “Table 3. Selected
Standard Metropolitan Statistical Areas: New Housing Units Authorized in Permit-Issuing
Places” in both the 1970s and 1980s.

1980s BPS Series. In the 1980s, the format stayed largely the same as in the 1970s, except
the December monthly tables are published together with the annual reports. The content of
reforms to the survey, which resulted in the modern data beginning in 1988, is alluded to on
the cover page of the January 1987 report (C40-87-1):

“Beginning with data for April 1987, two changes will be made to the procedures used to
seasonally adjust building permits estimates. First, the seasonal adjustment factors will be
recomputed each month using all available data rather than using projections based on data
through March of the previous year. Second, except for the total and one-unit estimates,
published figures will be adjusted directly rather than being derived by summing adjusted
components. The one-unit (single-family) estimate will be derived by adjusting and summing
its regional components. The total will be derived by summing the adjusted estimates of units
by type of structure (1, 2-4, and 5 or more). Each regional total will be adjusted separately.
Studies have shown that the revised methodology will usually result in small revisions.”

Monthly data at the state and sub-state levels only start in January 1988 in the master BPS
file downloadable directly from the U.S. Census website, or for individual geographies via
the FRED API.

Sourcing the reports. We received a collection of the pre-1988 scanned C42 reports directly
from the Economic Indicators Division of the Census Bureau. We then downloaded from
HathiTrust all non-duplicate scans of the *.PDF and *.TXT files from the publications for the
series in the month-years other than the ones we received directly from the Census Bureau. We
inspect the *.TXT files in cases where the scan is deprecated to the extent that we cannot read
specific entries. However, we use our own OCR procedures to digitize the data, as described
in Appendix B.3. For years before 1970, we focus on the C42 scanned PDFs, which contain
many monthly tables appended within the same year or a subset of adjacent years. For the
1970–1988, the state-level and MSA-level tables are in the C40 series. We then screened all relevant
tables within each scanned report for quality using the OCR tools. In cases where an entire
scanned table was too deprecated in the HathiTrust volumes, we contacted the Regional Federal
Depository Librarian at the Connecticut State Library to obtain fresh, high-quality scans.

In Figure B.3 we plot the raw seasonally adjusted permit counts we collected from the Census
BPS, starting in 1961, the first year where the survey follows its now-standard format. The
displayed trends are similar relative to Figure 2 which plots per capita permits. Most states
experienced a large boom in new residential permitting during the 2000s boom, but single-family
permit counts had only recovered in a small handful of states in the South (NC, TN, TX) on
the eve of the first wave of COVID-19 lockdowns in March 2020. Due to local public health
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restrictions (Ghent et al., 2024) and weakened demand for leased space due to COVID-19
exposure risk (Ling et al., 2020), permitting activity precipitously fell for both single-family
and multi-family units during 2020 and 2021.

B.3 Digitization Procedures

To create our geographically disaggregated database of building permits, we rely on several
optimal character recognition (OCR) techniques to scale up the digitization from scanned tables
in PDFs. Collecting all the information used in our main analysis would be excessively time
consuming given the monthly frequency of the reports and our use of state and MSA-level
(or city) data. For the post-1960s segment of our sample from the Census Building Permits
Survey, each annual volume consisting of the twelve monthly reports and annual summary
statistics regularly comprises over 500 pages of tables and text. There is less information to
process in the Dun’s Review publications, since there is only one level of aggregation (city) and
no separate tables for permit counts vs. valuation totals and single-family vs. total residential
permits as there is in the modern Census survey.

We combine two sets of OCR tools to digitize all the permit tables. First, we use the standard
ABBYY FineReader PDF software, combined with a customized Excel VBA code to purge the
output of any extraneous characters (e.g. “@"). Second, we use the Layout Parser Python package
designed by Shen et al. (2021) to apply modern deep learning algorithms to the digitization
of large-scale corpuses of historical text. We use the Tesseract OCR engine to implement the
Layout Parser routine. Tesseract provides a confidence level, or “score" for each rectangular
block it identifies in the data; the score is set to -1 if Tesseract identifies a block but fails to
detect any characters in that cell. We drop any output from blocks with a score less than 90 and
filter out any extraneous characters from the remaining output.

After implementing both methods, we then compare the fraction of cells on each page
populated data to the fraction obtained from ABBYY. For over 70% of the pages, the ABBYY
plus VBA method outperforms Layout Parser, but we use both methods because use of ABBYY
requires more “point and click" mechanical monitoring. For each table, we take the output file
which covers a greater fraction of cells. We then perform quality control by comparing reported
subtotals within each table to totals implied by cells within each row. For instance, in the Census
BPS, we check whether the “total" column matches the total number of permits obtained from
summing across the 1-unit, 2-units, 3 and 4-units, and 5-units or more totals. We set a tolerance
threshold such that cases where the row totals do not match can only be due to errors in the
digitization process rather than rounding. Tagging rows where the difference in row totals fall
outside this tolerance, we obtain an error rate of 1% to 2% of table rows, depending on the sample
period. We then assign hand-correction of the errors to our team of RAs. Finally, we standardize
the place names across tables within each underlying source publication, checking the Census
survey documentation to ensure the geographic span of the permit totals are consistent over time.

Figure B.4 provides an example of how Layout Parser identifies rectangular blocks of text
(highlighted in red) to convert to machine-readable text. The example is a scan from the
March 1986 MSA-level table with permit counts from the Census Building Permits Survey. This
“token" structure helps isolate place names in the table rows, but often struggles with particular
formatting conventions, such as the large type spaces between numerical characters for larger
counts and the ellipses in the row headings. Figure B.5 displays the resulting output from Layout
Parser on the left-hand side opposite the raw PDF table scan on the right-hand side. Comparing

8



FI
G

U
R

E
B

.3
.P

er
m

it
C

ou
nt

s
in

th
e

C
ro

ss
-S

ec
ti

on
of

U
.S

.S
ta

te
s,

19
61

–2
02

2

M
E

M
I

M
N

M
O

M
S

K
S

K
Y

LA
M

A
M

D

H
I

IA
ID

IL
IN

C
O

C
T

D
E

F
L

G
A

A
K

A
L

A
R

A
Z

C
A

19
60

19
75

19
90

20
05

20
20

19
60

19
75

19
90

20
05

20
20

19
60

19
75

19
90

20
05

20
20

19
60

19
75

19
90

20
05

20
20

19
60

19
75

19
90

20
05

20
20

19
60

19
75

19
90

20
05

20
20

19
60

19
75

19
90

20
05

20
20

19
60

19
75

19
90

20
05

20
20

19
60

19
75

19
90

20
05

20
20

19
60

19
75

19
90

20
05

20
20

19
60

19
75

19
90

20
05

20
20

19
60

19
75

19
90

20
05

20
20

19
60

19
75

19
90

20
05

20
20

19
60

19
75

19
90

20
05

20
20

19
60

19
75

19
90

20
05

20
20

19
60

19
75

19
90

20
05

20
20

19
60

19
75

19
90

20
05

20
20

19
60

19
75

19
90

20
05

20
20

19
60

19
75

19
90

20
05

20
20

19
60

19
75

19
90

20
05

20
20

19
60

19
75

19
90

20
05

20
20

19
60

19
75

19
90

20
05

20
20

19
60

19
75

19
90

20
05

20
20

19
60

19
75

19
90

20
05

20
20

19
60

19
75

19
90

20
05

20
20

010203040 369 12345

0.
0

2.
5

5.
0

7.
5

10
.0 0.
5

1.
0

1.
5

2.
0

2.
5

0.
0

2.
5

5.
0

7.
5 102030 0.
0

2.
5

5.
0

7.
5 0246 01234

0.
5

1.
0

1.
5

2.
0

0.
0

0.
5

1.
0

1.
5

0.
0

0.
5

1.
0

1.
5

2.
0 1234

0.
0

2.
5

5.
0

7.
5

1234 01234

0.
0

0.
5

1.
0

1.
5

2.
0 123 0369

0.
0

0.
5

1.
0

1.
5 051015 012 123

0.
0

0.
5

1.
0

1.
5

Seasonally Adjusted Building Permits (Thousands)

S
in

gl
e−

Fa
m

ily
 U

ni
ts

To
ta

l R
es

id
en

tia
l U

ni
ts

M
on

th
ly

 B
ui

ld
in

g 
P

er
m

its
 b

y 
S

ta
te

 a
nd

 U
ni

t T
yp

e 
(S

ea
so

na
lly

 A
dj

us
te

d,
 in

 th
ou

sa
nd

s)

N
ot

es
:

Th
e

fig
ur

e
pl

ot
s

fo
r

ea
ch

st
at

e
th

e
se

as
on

al
ly

ad
ju

st
ed

nu
m

be
r

of
to

ta
l

pr
iv

at
e

re
si

de
nt

ia
l

pe
rm

it
s

(b
la

ck
)

an
d

pr
iv

at
e

si
ng

le
-f

am
ily

ho
m

e
pe

rm
it

s
(r

ed
)

fil
ed

in
th

at
st

at
e

fo
r

a
gi

ve
n

m
on

th
ac

co
rd

in
g

to
th

e
C

en
su

s
Bu

ild
in

g
Pe

rm
it

s
Su

rv
ey

(1
96

1M
1–

20
22

M
12

).
Th

e
ti

m
e

se
ri

es
of

pe
rm

it
co

un
ts

ex
cl

ud
es

pe
rm

it
s

fil
ed

fo
r

pu
bl

ic
co

ns
tr

uc
ti

on
co

nt
ra

ct
s.

W
e

se
as

on
al

ly
ad

ju
st

ea
ch

se
ri

es
us

in
g

th
e

C
en

su
s

X
-1

3
A

R
IM

A
-S

EA
TS

fil
te

r
(c

f.
A

pp
en

di
x

B.
4)

.
G

re
y-

sh
ad

ed
ar

ea
s

in
di

ca
te

N
BE

R
-d

at
ed

re
ce

ss
io

ns
.W

e
st

ar
t

th
e

sa
m

pl
e

at
19

61
M

1,
si

nc
e

19
61

is
th

e
fir

st
ye

ar
th

e
su

rv
ey

fo
llo

w
s

it
s

st
an

da
rd

fo
rm

at
.

9



FI
G

U
R

E
B

.3
.P

er
m

it
C

ou
nt

s
in

th
e

C
ro

ss
-S

ec
ti

on
of

U
.S

.S
ta

te
s,

19
61

–2
02

2
(C

on
ti

nu
ed

)

V
T

W
A

W
I

W
V

W
Y

S
D

T
N

T
X

U
T

V
A

O
K

O
R

PA
R

I
S

C

N
J

N
M

N
V

N
Y

O
H

M
T

N
C

N
D

N
E

N
H

19
60

19
75

19
90

20
05

20
20

19
60

19
75

19
90

20
05

20
20

19
60

19
75

19
90

20
05

20
20

19
60

19
75

19
90

20
05

20
20

19
60

19
75

19
90

20
05

20
20

19
60

19
75

19
90

20
05

20
20

19
60

19
75

19
90

20
05

20
20

19
60

19
75

19
90

20
05

20
20

19
60

19
75

19
90

20
05

20
20

19
60

19
75

19
90

20
05

20
20

19
60

19
75

19
90

20
05

20
20

19
60

19
75

19
90

20
05

20
20

19
60

19
75

19
90

20
05

20
20

19
60

19
75

19
90

20
05

20
20

19
60

19
75

19
90

20
05

20
20

19
60

19
75

19
90

20
05

20
20

19
60

19
75

19
90

20
05

20
20

19
60

19
75

19
90

20
05

20
20

19
60

19
75

19
90

20
05

20
20

19
60

19
75

19
90

20
05

20
20

19
60

19
75

19
90

20
05

20
20

19
60

19
75

19
90

20
05

20
20

19
60

19
75

19
90

20
05

20
20

19
60

19
75

19
90

20
05

20
20

19
60

19
75

19
90

20
05

20
20

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

5.
0

7.
5

10
.0 012345 2468

0.
00

0.
25

0.
50

0.
75

012 051015 0.
0

0.
3

0.
6

0.
9

1.
2 01234

0.
00

0.
25

0.
50

0.
75

1.
00

0.
0

0.
5

1.
0

1.
5 024 036912 1020 1234

2.
5

5.
0

7.
5

0.
0

0.
5

1.
0

1.
5

2.
0 1234 12345 246

0.
00

0.
25

0.
50

0.
75

1.
00 246 12345

0.
0

0.
5

1.
0

1.
5

0.
0

0.
3

0.
6

0.
9

Seasonally Adjusted Building Permits (Thousands)

S
in

gl
e−

Fa
m

ily
 U

ni
ts

To
ta

l R
es

id
en

tia
l U

ni
ts

M
on

th
ly

 B
ui

ld
in

g 
P

er
m

its
 b

y 
S

ta
te

 a
nd

 U
ni

t T
yp

e 
(S

ea
so

na
lly

 A
dj

us
te

d,
 in

 th
ou

sa
nd

s)

N
ot

es
:

Th
e

fig
ur

e
pl

ot
s

fo
r

ea
ch

st
at

e
th

e
se

as
on

al
ly

ad
ju

st
ed

nu
m

be
r

of
to

ta
l

pr
iv

at
e

re
si

de
nt

ia
l

pe
rm

it
s

(b
la

ck
)

an
d

pr
iv

at
e

si
ng

le
-f

am
ily

ho
m

e
pe

rm
it

s
(r

ed
)

fil
ed

in
th

at
st

at
e

fo
r

a
gi

ve
n

m
on

th
ac

co
rd

in
g

to
th

e
C

en
su

s
Bu

ild
in

g
Pe

rm
it

s
Su

rv
ey

(1
96

1M
1–

20
22

M
12

).
Th

e
ti

m
e

se
ri

es
of

pe
rm

it
co

un
ts

ex
cl

ud
es

pe
rm

it
s

fil
ed

fo
r

pu
bl

ic
co

ns
tr

uc
ti

on
co

nt
ra

ct
s.

W
e

se
as

on
al

ly
ad

ju
st

ea
ch

se
ri

es
us

in
g

th
e

C
en

su
s

X
-1

3
A

R
IM

A
-S

EA
TS

fil
te

r
(c

f.
A

pp
en

di
x

B.
4)

.
G

re
y-

sh
ad

ed
ar

ea
s

in
di

ca
te

N
BE

R
-d

at
ed

re
ce

ss
io

ns
.W

e
st

ar
t

th
e

sa
m

pl
e

at
19

61
M

1,
si

nc
e

19
61

is
th

e
fir

st
ye

ar
in

w
hi

ch
th

e
su

rv
ey

fo
llo

w
s

it
s

st
an

da
rd

fo
rm

at
.

10



the two tables, the package is able to correctly identify most of the numerical and missing entries
(indicated by an en-dash). However, extraneous characters appear in the place names, and there is
no easy way to automatically fix the formatting so that row headings are attached to the correct
set of data entries. We also cannot retroactively add back in the row labels using a common
alphabetical ordering given that the set of MSAs (or counties and towns) included in the changes
month-to-month. For states, this drawback to Layout Parser is less of an issue.

Layout Parser’s performance improves relative to ABBYY during the earlier period of our
sample in which we source the permits data from scans of the tables in Dun’s Review, as
described in Appendix B.1. Figure B.6 shows sample output from a scan of part of the table
of annual permit valuation totals reported in the 1939 volume of Dun’s Review. Relative to
the modern data source, Layout Parser produces fewer typos for the numerical entries in the
pre-1960s tables. The training dataset used in the “Fast" version of the Shen et al. (2021) base
model we use consists of early 20th century newspapers, resulting in more accurate renderings
of the permits tables. While this could be due to the differences in contrast across training
datasets (i.e. the pages are more or less yellowed due to age), the gains in performance are
limited even if we experiment with the contrast settings for reading the modern Census tables
into the package. We use GPUs to run the routine in an attempt to best mimic the computing
environment used to train the digitization algorithm.

B.4 Seasonal Adjustment Methods

Given the high degree of intra-year cyclicality in the real estate sector relative to the seasonality
of stock and bond returns, it is critical to seasonally adjust our building permits series before
computing growth rates and volatilities. The Census provides its X-13ARIMA-SEATS program
to strip macro time series of their seasonal components.2 We set up a Linux machine to run the
X-13 routine and adapt the underlying source code to accommodate longer time series so that
we can apply the filter to our entire sample. To ensure that we are able to match the seasonal
adjustments applied by the Census to the modern time sample, we run the X-13 filter on the
unadjusted permit counts series obtained through the FRED API and compare our resulting
seasonally adjusted series to the seasonally adjusted series publicly available through FRED.

Appendix B.4 shows that in the monthly state-level panel of building permit levels, our X-13
filtered series and the seasonally adjusted series downloadable from the Census via FRED line
up almost perfectly, with an R2 of 99.99%. One limitation to the X-13 filter routine provided
by the Census is that it cannot accommodate missing values. Hence, for a small number of
cases where the Census monthly report lists an “NA" value for permit counts of valuations, we
interpolate using the midpoint between adjacent months with non-missing values for a given
locality. For instance, permit counts are missing in May 1976 for Massachusetts, so we fill in
the value for May 1976 using the average of the values reported for Massachusetts in April
and June of that year. Our use of midpoint interpolation leads to the negligible differences
between seasonally adjusted permit levels visible in Appendix B.4. To maintain consistency
over our full permits database spanning 100 years, we use the X-13 filter with this midpoint
convention for filling in missing values in both the post-1960s Census period of our sample
and the pre-1960s sample sourced from Dun’s Review.

2The documentation and interface programs can be downloaded here: https://www.census.gov/data/
software/x13as.html.
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FIGURE B.4. Example: Layout Parser Fields from March 1986 Building Permits Survey

Notes: Example of the Layout Parser package of Shen et al. (2021) applied to Table 3 from the March 1986 Census
Building Permits Survey. We received a PDF copy of this report directly from the Economic Indicators Division of the
Census Bureau. The red boxes indicate “blocks” of text identified by Layout Parser.
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FIGURE B.7. Comparison of X-13 Filter to FRED/Census Seasonally Adjusted Data

A. Single-Family Home (SFH) Permits
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B. Total Private Residential Permits
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Notes: The figure compares seasonally adjusted Census building permit counts downloaded via the FRED API vs.
the raw Census building permit counts that we seasonally adjusted using the X-13ARIMA-SEATS software provided
by the Census. Each point in the scatterplot refers to a state-month observation. Panel A performs this exercise for
single-family home permits, while Panel B does this for all total private residential permits (i.e. SFH + multi-family
permits, excluding any permits tied to public contracts). We implement the X-13 filter on a Linux workstation.

B.5 Splicing Together Permit Valuation Series

i

B.6 Going between Permit Quantities and Values

Despite our finding that the permit quantities and valuations are nearly 100% correlated in
the modern Census span of our data, it may be the case that volatility in permit quantities
and valuations are more divorced in earlier time periods where housing price indices are not
readily available at geographically disaggregated levels. We address these additional concerns
by checking robustness of our results to using three sets of alternative series:

1. We use the historical housing price indices produced by Lyons et al. (2024) to extend vs,t
further back to 1960 for 30 cities with home sale newspaper listings.

2. We deflate the Dun’s series using annual state-level construction cost indices collected from
volumes of Building Construction Cost Data, published by R.S. Means beginning in 1942
to present, to isolate a measure of permit quantities which can be spliced together with
the Census Qs,t series. D’Amico et al. (2024) use a subset of the volumes from R.S. Means
starting in 1998 to estimate the cost of economy quality homes. Conversely, we can convert
Census Qs,t series to Vs,t using the construction cost data from 1960 onward to improve the
match with the replacement cost values collected in Dun’s.

3. We digitize the rental price indices available from U.S. Bureau of Labor Statistics (1954) for
1919 – 1952 and assume a constant cap rate for multi-family structures to create another
deflator for 20 cities’ valuation series.
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C Alternative GARCH Specifications

In this appendix, we compare the convergence properties of the three most common GARCH
model specifications in the finance literature. We show that for most samples and time periods
in the building permits data, GARCH outperforms GJR and E-GARCH in terms of convergence
rates and unique solutions. As a robustness check, we present results using GJR-GARCH as
the next-best alternative specification for BPG volatility.

C.1 Stability Tests of GARCH Models

We justify our use of the workhorse GARCH(1,1) specification in equation (C.2) for computing
conditional volatility of building permit growth (BPG) by demonstrating that alternative GARCH
models often converge to multiple solutions when applied to the building permit data or
do not converge at all for some states-level permits series. There are three main classes of
GARCH models used in the financial economics literature. For each model, we retain the
same mean equation:

xt = θ0 + θ1 · xt−1 + εt, with εt ∼ N (0, σ2
t ) (C.1)

1. GARCH(1,1):

(σGARCH
t )2 = α0 + α1 · ε2

t−1 + α2 · (σGARCH
t−1 )2 s.t. αi > 0; α1 + α2 < 1 (C.2)

2. GJR-GARCH:

(σGJR
t )2 = α0 + α1 · ε2

t−1 + α2 · (σGJR
t−1 )

2 + γ · ε2
t−1 · 1{εt−1 < 0} s.t. α1 + α2 +

γ

2
< 1 (C.3)

3. E-GARCH: An advantage to the E-GARCH augmentation is that it can capture a stylized
fact about stock returns that the standard GARCH model cannot. Namely that negative
shocks at period t − 1 have a stronger effect on time t variance than positive shocks.
Another advantage is that estimating a log-likelihood reduces computational time. There
are no parameter restrictions imposed on the E-GARCH specification because the variance
is always positive by construction.

ln (σEXP
t )2 = α0 + α1 ·

(
εt−1

σEXP
t−1

)
+ α2 · ln (σEXP

t−1 )2 + γ ·
(∣∣∣∣∣ εt−1

σEXP
t−1

∣∣∣∣∣−
√

2
π

)
(C.4)

We estimate the three conditional volatility models for U.S. aggregate and state-level permit
series and separately for single-family homes (SFH) and total private residential permits (TOT).
We perform two versions of the same simulation exercise in which we vary the constraint
on the starting values for the optimizer routine and the parameter domain on E-GARCH. In
both versions, we adopt the textbook optimization constraints listed above for GARCH(1,1)
and GJR-GARCH. Each simulation takes 10,000 draws from the feasible set of starting values
with replacement and then runs variance targeting on the demeaned permit growth time series
using the basinhopping routine in Python.3

3Documentation for basinhopping can be found here: https://docs.scipy.org/doc/scipy/reference/
generated/scipy.optimize.basinhopping.html.
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FIGURE C.1. Convergence of Coefficients for Conditional Volatility Models

Notes: We illustrate the results of simulation version 1 by plotting the coefficients of convergence for the three main
types of GARCH models considered in the literature. We take 500 random draws with replacement of starting
parameter values of (α1, α2) on the interval αi ∈ (−1, 1) for E-GARCH and αi ∈ (0, 1) for the other two models.
For each draw, we estimate via quasi-maximum likelihood estimation (QMLE) the GARCH(1,1) [blue] specification
given by equation (C.2), the GJR-GARCH [orange] model from equation (C.3), and the E-GARCH [green] model from
equation (C.4). We estimate each model for building permit growth (BPG) volatility, where we compute aggregate
U.S. seasonally adjusted single-family home building permit growth covering the modern Census Building Permits
Survey (1988M1 to 2019M12).

Simulation Version 1

• GARCH specifications:

– Optimization constraint: α1 + α2 < 1
– Starting values constraint: select two random non-negative values satisfying α1 + α2 =

0.9
– Parameter domain: α0 > 0; 0 < α1 < 1; 0 < α2 < 1

• GJR-GARCH specifications:

– Optimization constraint: α1 + α2 + γ/2 < 1
– Starting values constraint: select three random non-negative values satisfying α1 +

α2 + γ = 0.9
– Parameter domain: α0 > 0; 0 < α1 < 1; 0 < α2 < 1; 0 < γ < 1

• E-GARCH specifications:

– Optimization constraint: none
– Starting values constraint: select three random values satisfying α1 + α2 + γ = 0.9
– Parameter domain: α0 ∈ R;−1 < α1 < 0.9;−1 < α2 < 0.9;−1 < γ < 0.9
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Simulation Version 2

• GARCH specifications:

– Optimization constraint: α1 + α2 < 1

– Starting values constraint: select two random non-negative values satisfying α1 + α2 =
0.999

– Parameter domain: α0 > 0; 0 < α1 < 1; 0 < α2 < 1

• GJR-GARCH specifications:

– Optimization constraint: α1 + α2 + γ/2 < 1

– Starting values constraint: select three random non-negative values satisfying α1 +
α2 + γ = 0.999

– Parameter domain: α0 > 0; 0 < α1 < 1; 0 < α2 < 1; 0 < γ < 1

• E-GARCH specifications:

– Optimization constraint: none

– Starting values constraint: select three random non-negative values satisfying α1 +
α2 + γ = 0.999

– Parameter domain: α0 ∈ R; 0 < α1 < 1; 0 < α2 < 1; 0 < γ < 1

There are two key differences between the simulation versions. In version 1, we select starting
values away from the boundaries of the parameter domain. In version 2, we allow for starting
values at the boundary of the parameter domain but additionally require that the E-GARCH
coefficients be strictly positive so that the parameter domain matches the domain for GARCH
and GJR-GARCH.

Table A.1 summarizes how each of the GARCH models performs in terms of convergence
rates (CR) and stability (i.e., number N of unique solutions up to four decimal places). We
define two solutions to be identical if the estimated parameters of the GARCH model are
the same up to five decimal places. In Panel A, we present results from simulation version
2 which imposes textbook optimization constraints and the same parameter domains across
the models. We find that for the modern period GARCH outperforms GJR-GARCH in terms
of the multiplicity problem. For the two non-unique solutions GARCH delivers for the TOT
series, the parameter estimates only differ at the fourth decimal place. In Panel B, we compare
simulation versions 1 and 2 and use the more recent years of data for which we can deflate
permit quantities according to housing price indices. Convergence rates are broadly similar and
close to 100% across all three GARCH types in version 2.

In cases of instability where N > 1, we assess how much two GARCH models deviate
from each other on average. To do this, we compute all convergent conditional volatility series
for each method. We then compute all pairwise correlations between the conditional volatility
series estimated via two different specification (i.e., between GARCH and GJR-GARCH, between
GARCH and E-GARCH, and between GJR and E-GARCH). Finally, we average across the
pairwise correlations and report the results in Table A.2. Across different combinations of
series (SFH for single-family homes vs. TOT for total residential permits) and GARCH models,
instances of multiple solutions still result in conditional volatility estimates which are highly
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TABLE A.1. Convergence and Parameter Stability across GARCH Models of BPG Volatility

A. Single-Family Homes vs. Total Private Residential Permits: Simulation Version 2

Single-Family Homes Permits Total Private Residential Permits

Convergence N. Unique Convergence N. Unique Convergence N. Unique Convergence N. Unique
Rate Solutions Rate Solutions Rate Solutions Rate Solutions

GARCH 0.9876 44 0.9984 4 0.9984 2 0.9999 2
GJR-GARCH 0.9457 7 0.9986 14 0.9976 5 0.9996 3
E-GARCH 0.9974 11 0.9998 7 0.9992 6 1 1

Sample 1960 – 2019 1960 – 2019 1980 – 2019 1980 – 2019 1960 – 2019 1960 – 2019 1980 – 2019 1980 – 2019

B. Comparing Simulation Version Results in the Post-2000s Period

U.S. Building Permits: P × Q

Simulation Version 1 Simulation Version 2

Convergence N. Unique Convergence N. Unique
Rate Solutions Rate Solutions

GARCH 0.9999 4 0.9999 4
GJR 0.9997 20 1 16
E-GARCH 0.3907 3859 0.9979 4

Sample 2000 – 2023 2000 – 2023 2000 – 2023 2000 – 2023

Notes: We estimate GARCH, GJR-GARCH, and E-GARCH models for each of the two aggregate U.S. building permits
series: (i) Single-Family Homes (SFH); and (ii) Total Private Residential Permits. We consider the samples over the
full Census period of 1960–2019 and the more recent sample from 1980–2019. For each model and series, we report
two items: (i) the convergence rate, defined as the fraction of starting parameter draws for which the optimization
routine converges to a solution; and (ii) the number of unique solutions obtained from each GARCH model, where
uniqueness is defined up to five decimal places. See text for simulation details.

TABLE A.2. Average Pairwise Correlations between GARCH Conditional Volatility Estimates

Series Sample Period Corr(σGAR, σGJR) Corr(σGAR, σEGR) Corr(σGJR, σEGR)

SFH Permits 1960 – 2019 0.8115 0.9538 0.8282

SFH Permits 1980 – 2019 0.8899 0.9754 0.8829

Total Permits 1960 – 2019 0.8590 0.6854 0.5439

Total Permits 1980 – 2019 0.9162 0.7866 0.6840

Notes: We estimate GARCH, GJR-GARCH, and E-GARCH models for each of the four aggregate U.S. building permits
series over the full Census sample period of 1960–2019 and using the more recent sample from 1980–2019. For each
unique solution obtained from each GARCH model, where uniqueness is defined up to five decimal places, we then
report the average pairwise correlations across solutions between two models. See text for simulation details.

correlated, on average. Hence, despite any instability, our results on the predictability of BPG
volatility are broadly robust to the choice of GARCH specification.

Importantly, we conduct our simulation exercises in using a segment of the data from the
modern version of the Building Permits Survey, which consists of monthly building permit
reports already digitized by the Census and made available to the public by download. This
means that our finding of multiple solutions for GJR and E-GARCH models as applied to
building permits cannot be due to any measurement error arising due to either our digitization
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methods—although, as discussed in Appendix B.3, we have multiple quality control measures
in place—or due to low-quality versions of any extant scans of copies of the physical reports.
Nonetheless, the instability of GJR and E-GARCH holds for different sample cuts, including
when we fit each GARCH model to our U.S. aggregate BPG series covering the Census time
period and when we estimate the GARCH models for each U.S. state.

C.2 Main Predictability Results using GJR-GARCH

We replicate the main analysis from Section 5.1 for the longitudinal sample of permits from the
Census Building Permit Survey. Table A.3 shows that the loading on aggregate BPG volatility
is quantitatively similar regardless of the choice of GARCH model, across various sets of
controls for macroeconomic conditions. This is perhaps unsurprising given the findings from
our simulation exercise that GARCH(1,1) and GJR-GARCH deliver highly correlated conditional
volatility series when applied to nationwide permit series, even at the extremes of the possible
solution set. While the aggregate loading on BPG volatility is of a similar magnitude to the
coefficients in Table 1, the BPG volatility estimated via GJR-GARCH has more explanatory
power for both equities and corporate bonds. The incremental R2 of single-family home volatility
for equities in Table A.3 is 9.5% (Panel A, column 1) compared to 3.1% for GARCH-implied
volatility; for bonds and single-family permits, the incremental R2 is 5.7 p.p. greater for
GJR-GARCH than for GARCH(1,1).

The cross-sectional results display a similar pattern when we compare GJR-GARCH to
GARCH(1,1). Figure C.2 reproduces Figure 4 in which we regress equity and bond return
volatility on BPG volatility for each state. While the ordinal ranking of states according to
the magnitude of their loadings on BPG volatility is similar for GJR-GARCH vs. GARCH(1,1),
the predictability is almost always greater and more precisely estimated for GJR-GARCH. For
example, Florida single-family permits the elasticity on stock return volatility is significant
at the 1% level and 30% greater when measured according to GJR-GARCH, compared to
GARCH(1,1). For corporate bond return volatility, there are fewer differences in the state-by-state
point estimates across the two GARCH models. Overall, we find that the use of the
workhorse GARCH(1,1) specification in our main results results in conservative estimates of
the predictability of BPG volatility for asset returns.

C.3 Tests of Normality of BPG Distributions

The GJR-GARCH specification was originally developed to account for the extreme skewness
in the distribution of risky asset returns. Therefore, it is possible that for some permits series
featuring fat tails in the permit growth (BPG) distribution, GJR-GARCH is the more appropriate
model. We conduct separate tests for normality separately for each state and across different time
periods and in the pooled panel of states in our permits database. We calculate the test statistic
of D’Agostino et al. (1990) with the correction proposed by Royston (1992).4

Figure C.3 plots the distribution of monthly BPG for the entire U.S. (left-hand panels) and in
the cross-section of states (right-hand panels). There are clear differences in the normality of BPG
in aggregate vs. across states and for the pre vs. post-1960s period. In Panel A—regardless of
whether we include New York State, which has outsize influence on national building permits

4This corresponds to the default options for the sktest command in Stata.
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TABLE A.3. Regressions of Asset Return Volatility on Nationwide U.S. BPG Volatility (GJR-GARCH)

A. Total Private Residential Units BPG Volatility

Asset Market: Equities Corporate Bonds

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

σBPG
t−1 0.088∗∗∗ 0.027∗∗ 0.026∗∗ 0.025∗∗ 0.064∗∗ 0.070∗∗∗ 0.036∗∗∗ 0.035∗∗∗ 0.033∗∗∗ 0.016∗∗∗

(2.82) (2.45) (2.47) (2.39) (2.57) (4.68) (3.76) (3.40) (3.18) (3.77)

Time sample 1960-19 1960-19 1980-19 1980-16 2000-16 1960-19 1960-19 1980-19 1980-16 2000-16

Monthly dummies
Lagged asset return vol.
PopGrowtht−p

Leveraget−p

DSCRt−p

IPGrowtht−p

DisasterNVIXt−p

N 714 707 479 435 195 714 707 479 435 195
R2 0.109 0.471 0.463 0.471 0.605 0.185 0.367 0.452 0.444 0.544

B. Single-Family Units BPG Volatility

Asset Market: Equities Corporate Bonds

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

σBPG
t−1 0.074∗∗∗ 0.024∗∗ 0.022∗∗ 0.022∗∗ 0.049∗∗ 0.076∗∗∗ 0.044∗∗∗ 0.040∗∗∗ 0.038∗∗∗ 0.015∗∗∗

(2.60) (2.40) (2.49) (2.41) (2.18) (6.07) (4.48) (4.54) (4.28) (3.99)

Time sample 1960-19 1960-19 1980-19 1980-16 2000-16 1960-19 1960-19 1980-19 1980-16 2000-16

Monthly dummies
Lagged asset return vol.
PopGrowtht−p

Leveraget−p

DSCRt−p

IPGrowtht−p

DisasterNVIXt−p

N 714 707 479 435 195 714 707 479 435 195
R2 0.095 0.470 0.462 0.471 0.599 0.258 0.391 0.471 0.463 0.543

Notes: The table presents estimates from equation (4.2) relating total return volatility to building permit growth
(BPG) volatility. The difference relative to Table 1 is that we produce conditional BPG volatility using the GJR-GARCH
model in (C.3). In Panel A we use total private residential permits as the quantity measure Qs,t, but instead use permits
attached to single-family units in Panel B. We include in most specifications a set of controls for other macroeconomic
observables directly related to BPG volatility, which might also drive aggregate financial market volatility. PopGrowth
refers to the annual population growth rate from the Census. Leverage is the aggregate corporate leverage ratio
based on firms’ annual filings in COMPUSTAT, computed as the sum of long-term debts (dltt) and debts in current
liabilities (dlc), divided by total stockholders’ equity (seq). DSCR is the quarterly household debt service coverage
ratio from the Federal Reserve, defined as household debt service payments as a fraction of disposable income.
IPGrowth is the month-on-month growth rate in the industrial production index (INDPRO). In some specifications,
we add the natural disaster component of the News Implied Volatility Index (NVIX) of Manela and Moreira (2017).
We include a BIC-optimal number of lags for each specification with control variables, for which we obtain a lag
order of p = 1. The time sample varies depending on the data availability of covariates, with DSCR available starting
in 1980, and the NVIX available only up to 2016. t-statistics obtained from Newey–West standard errors where we
select for each specification the minimum lag order such that the estimator for the covariance matrix is consistent.
***p < 0.01, **p < 0.05, *p < 0.1.
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during the prewar period—we can reject the null of a normal distribution on the skewness
dimension for aggregate U.S. BPG in the Dun’s data covering 1919 to 1957. Panel B shows that
we can only reject the null of no skewness relative to a normal distribution at the 5% significance
level, for both the population-weighted and unweighted permits series in Dun’s, indicating that
building permit growth in some states is more normally distributed than it is nationwide.

In contrast, in the modern Census sample of our data, aggregate U.S. BPG is almost perfectly
symmetric, with a p-value on the skewness test of 0.91 for single-family home permits. Mean
BPG is also much lower in the modern period, with zero average monthly growth in quantities
post-1960s compared to an average monthly growth rate of 0.6% in the pre-1960s sample based
on the valuations surveyed in Dun’s. However, despite these differences, due to the fat tails in
the BPG distributions, the joint Chi-squared test of normality combining the test statistics for
skewness and kurtosis always rejects the null of a normal distribution across all time series
and periods at the 1% significance level.

Table A.4 separately reports p-values from skewness tests for each sample time period and each
state. There is a clear positive correlation between the extent to which BPG volatility implied by
the GJR-GARCH model (as shown in Figure C.2 for single-family home permits) is strongly
predictive of asset return volatility and the degree of skewness in the BPG distribution. This
points to the appropriateness of the GJR specification for conditional BPG volatility in less
population-dense parts of the country exhibiting very large swings in permitting activity. The
results of this exercise also explain why for such states the magnitude and significance of the
loadings on σBPG

t−p differ depending on the GARCH specification we use.

D Additional Results

We highlight some additional results in this appendix, including break dates implied by
Bai-Perron tests in the building permit series, comparison of our lead-lag models in Section 5
to results obtained from the local projection method of Jordà (2005), and principal component
analysis over longer time periods.

D.1 Break Dates in the Geographic Cross-Section

We formally test for structural breaks in the seasonally adjusted state-level permit series and
GARCH-implied building permit growth volatility using the “one break at a time" sup Wald
statistics of Bai and Perron (1998). We adopt the standard symmetric trimming percentage of 15%,
such that for each series we search for breaks over 1969M5 to 2014M1. This trimming percentage
allows us to identify possible breaks around key economic episodes in the modern Census period,
including the oil crises of the 1970s and stagflation and the Great Recession. We then search over
this trimmed sample period for a maximum of seven breaks. The maximum number of breaks we
identify in any state’s permit levels or BPG volatility series is five. Only one state, Iowa, features
no breaks in its building permit series, and two is the modal number of breaks.

Figure D.1 plots at each month over the trimmed sample period the number of states with
breaks in their GARCH BPG volatility (left panels) or seasonally adjusted building permits
(right panels). The breaks are concentrated around recession episodes and in the early 1970s
around spikes in oil prices. For both volatility and permit levels, and regardless of whether
we consider single-family permits or all residential permits, we uncover a large mass of states

23



FIGURE C.3. Pooled Distributions and Skewness Tests for Building Permit Growth

A. U.S. BPG in Dun’s Review B. Cross-Sectional BPG in Dun’s Review

C. U.S. BPG in Census BPS D. Cross-Sectional BPG in Census BPS

Notes: The figure plots the distribution of month-on-month building permit growth (BPG) for the Dun’s Review data
in Panels A and B and for the Census Building Permits Survey (BPS) in Panels C and D. The Dun’s Review data
cover the period 1919M1 to 1957M10, while the Census BPS data cover 1960M5 to 2019M12. In the left-hand panels
we plot the distribution of monthly BPG computed using total nationwide permits. In the Dun’s sample we report
separate means and skewness test p-values for the entire U.S. and the entire U.S. excluding permits from New York
State to examine the influence of New York City. In the Census BPS sample, we report separate statistics for the
total residential permits (TOT) vs. single-family homes (SFH). The right-hand panels instead plot the cross-sectional
distribution of monthly BPG, which includes observations from each state’s permits time series. For the Dun’s sample,
we report separate statistics for population unweighted and weighted observations, while for the Census BPS sample
we again distinguish between TOT and SFH permit counts in computing BPG.
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TABLE A.4. Skewness Tests for Building Permit Growth by State and Subsample

Data Source: Dun’s Review (1919–1957) U.S. Census BPS (1960–2019)

Subsample: Unweighted Weighted Total Single-Family

United States 0.000*** − 0.878 0.905

Alabama 0.000*** 0.000*** 0.443 0.023**
Alaska − − 0.000*** 0.560
Arizona 0.481 − 0.010*** 0.571
Arkansas 0.929 − 0.833 0.261
California 0.000*** 0.000*** 0.032** 0.653
Colorado 0.000*** 0.000*** 0.000*** 0.819
Connecticut 0.138 0.138 0.036** 0.429
Delaware 0.600 − 0.008*** 0.002***
Florida 0.126 0.126 0.005*** 0.132
Georgia 0.063* 0.063* 0.127 0.043**
Hawaii − − 0.340 0.743
Idaho 0.697 − 0.000*** 0.000***
Illinois 0.058* 0.058* 0.133 0.050**
Indiana 0.216 0.216 0.366 0.389
Iowa 0.096* 0.096* 0.000*** 0.163
Kansas 0.003*** 0.003*** 0.047** 0.000***
Kentucky 0.095* 0.095* 0.104 0.567
Louisiana 0.000*** 0.000*** 0.863 0.025**
Maine 0.219 − 0.001*** 0.589
Maryland 0.216 0.216 0.177 0.953
Massachusetts 0.079* 0.079* 0.028** 0.960
Michigan 0.284 0.284 0.082* 0.153
Minnesota 0.008*** 0.008*** 0.009*** 0.006***
Mississippi − − 0.182 0.000***
Missouri 0.410 0.410 0.023** 0.010***
Montana 0.000*** − 0.513 0.129
Nebraska 0.396 0.396 0.144 0.784
Nevada − − 0.081* 0.020**
New Hampshire − − 0.683 0.011**
New Jersey 0.323 0.323 0.152 0.000***
New Mexico 0.050** − 0.949 0.350
New York 0.000*** 0.000*** 0.000*** 0.003***
North Carolina 0.078* − 0.623 0.075**
North Dakota 0.953 − 0.044** 0.001***
Ohio 0.000*** 0.000*** 0.209 0.444
Oklahoma 0.067* 0.067* 0.793 0.442
Oregon 0.016** 0.016** 0.696 0.191
Pennsylvania 0.962 0.962 0.219 0.000***
Rhode Island 0.401 0.401 0.000*** 0.467
South Carolina 0.023** − 0.000*** 0.000***
South Dakota 0.017** − 0.015** 0.001***
Tennessee 0.065* 0.065* 0.844 0.016**
Texas 0.167 0.167 0.378 0.372
Utah 0.028** 0.028** 0.001*** 0.007***
Vermont 0.089* − 0.127 0.467
Virginia 0.011** 0.011** 0.720 0.019**
Washington 0.031** 0.031** 0.842 0.054**
Washington, D.C. − − 0.974 0.928
West Virginia 0.379 − 0.419 0.004***
Wisconsin 0.025** 0.025** 0.162 0.354
Wyoming − − 0.006*** 0.560

Notes: The table reports the p-value for D’Agostino et al. (1990) tests applied to the distribution of month-on-month
building permit growth (BPG) observations within each state’s time series for different subsamples. Within the Dun’s
Review sample, unweighted refers to monthly BPG based on raw X-13 seasonally adjusted permit valuations, while the
weighted series proportionally weights cities surveyed within each state based on their annual population to create a
state-level series. Within the Census Building Permits Survey (BPS) sample, we report p-values for the skewness test
applied to total residential permit (TOT) and single-family home (SFH) permit counts. ***p < 0.01, **p < 0.05, *p < 0.1.
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FIGURE D.1. Bai-Perron Break Date Tests for State-Level Building Permits

BPG Volatility (GARCH) BP Levels
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Notes: We conduct Bai and Perron (1998) break date tests for each building permit series using the conditional
volatility of building permit growth computed via equation (3.3) in the left-hand panels, and levels in the right-hand
panels. We start with the full sample from 1960M5 to 2022M12 and then trim the sample by 15% on either side to limit
the dependence of the test on the start and end values of the time series. We then search over the trimmed sample
period for a maximum of seven breaks, searching for one break at a time according to the default test procedures in
the strucchange R package. Grey-shaded areas indicate NBER-dated recessions.

with breaks on the eve of the Great Recession. Level breaks are more prevalent than volatility
breaks, and breaks are slightly less common in single-family permits (118 total breaks) than for
the series including all residential permits (125 total breaks), but breaks are more prevalent for
single-family permits around the Great Recession, consistent with the results shown in Section 5.3
in which we extract the subprime factor as the first principal component. Overall, these tests
complement our evidence in the main text that building permits in the geographic cross-section
are leading indicators for real economic and financial volatility.

D.2 Principal Components of BPG over the Longrun

We conduct the same exercise as done in Figure 7 for the Great Recession episode, but instead
using the extended sample covering the full Census BPS period. That is, we run principal
components analysis (PCA) on the panel of σBPG

s,t for the top 20 U.S. states and plot the principal
components (PCs) with an eigenvalue greater than one.5 The first PC explains 20% and 31%
of the variation in BPG volatility for total private residential permits and single-family homes,
respectively. However, unlike around the Great Recession period, when we conduct PCA over
the full period starting in the 1960s, the first PC is dominated by input supply shocks rather
than the subprime mortgage factor. For both total and SFH permits, largest spikes in the first
PC correspond to the onset of the oil crises of the 1970s, including the first few months of

5Here we select the top 20 states by their 1960 Census population, although which states we include in the sample
ultimately does not matter for the general time series patterns in the principal components.
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1973 (diplomatic fallout before the Yom Kippur War), the middle of 1975 when unemployment
peaked during the stagflation era, and the summer of 1980 (the Iran-Iraq War).

Cortes et al. (2024) show that the “war puzzle" identified by Schwert (1989) of lower stock
volatility during wartime and conflict periods coincides with build ups in defense spending,
which renders cash flows easier to forecast. On top of regressions in our main analysis in which
we directly control for aggregate and state-level leverage, these longitudinal PCA results belie
the argument that the predictability of BPG volatility originates from build ups in credit used to
finance risky investments with deferred payoffs, such as real estate development.

D.3 Predictability of CRSP Dividends

We replicate our main analysis in Section 5.1 using CRSP dividend volatility as our main
outcome variable. We construct CRSP dividend volatility as the monthly volatility of the daily
differences between the CRSP total return index (vwretd) and the CRSP ex dividend total
return index (vwretx), keeping the same all other aspects of our research design. Table A.5
shows that aggregate U.S. BPG volatility is a strong predictor of dividends over various periods
and conditional on a set of controls for macroeconomic conditions such as population growth,
leverage, household debt service, industrial production growth, and the war component of the
NVIX of Manela and Moreira (2017). We focus on a the war component of the NVIX as a possible
confounding factor leading to spurious correlation between BPG volatility and dividend volatility
given that large spikes in dividends over the post-1960s period correspond to defense build ups.

Notably, the predictive power of building permits declines in the post-2000s period around
the Global Financial Crisis, with the loading on σBPG

t−1 declining by almost one-half when we
compare the two specifications with the full set of controls (columns 6 vs. 8). The post-2000s
period corresponds to a 50% decline in dividend volatility over 2000-2019 relative to 1960–2000.
Together with the evidence in Table 1, BPG volatility is a stronger predictor of stock volatility
during cycles when the price component of returns accounts for the bulk of stock volatility.
However, consistent with our Grossman-Stiglitz modeling framework in Section 2, the BPG
volatility works well at forecasting dividend volatility, particularly during times when the cash
flow risk component of returns dominates. Since dividend payouts are highly seasonal, much
of the R2 in Table A.5 comes from the time dummies. The incremental R2 of σBPG

t−1 generated
by moving from a specification with only monthly dummies is 5.7% for single-family permits,
three times greater than the incremental R2 of 1.2% we obtain for BPG volatility on total stock
return volatility over the full post-1960s period.

D.4 State-Level Results Controlling for Local Economic Conditions

In this appendix, we show that our results from Section 5.1 showing the predictability of BPG
volatility in the geographic cross-section during the Census survey period hold after conditioning
on proxies for housing demand such as state-level leverage and population growth. We download
annual state-level population estimates from the Census and linearly interpolate within the year
to match the monthly frequency of building permits.

We construct state-level corporate leverage ratios by assigning the leverage of each
COMPUSTAT firm i in a given year t to its headquarters (HQ) state s and then compute the
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FIGURE D.2. Principal Components of BPG Volatility from Census Data (1961 – 2019)

B. Single−Family Home Permits

A. Total Private Residential Permits
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Notes: The figure plots the time series of principal components of state-level total private residential (Panel A)
and single-family home (Panel B) monthly building permit growth volatility with an eigenvalue greater than unity.
Monthly building permit growth volatility is defined by σBPG

s,t in equation (4.1). Our sample in both panels includes
the top 20 states ranked by 1960 decennial Census population. We conduct PCA over the time period 1961 – 2019,
excluding the post-COVID-19 period to ensure convergence of the GARCH models. Grey-shaded areas indicate
NBER-dated recessions.
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TABLE A.5. Regressions of CRSP Dividend Volatility on Nationwide U.S. BPG Volatility

A. Total Private Residential Units BPG Volatility

(1) (2) (3) (4) (5) (6) (7) (8)

σBPG
t−1 0.0016∗∗∗ 0.0014∗∗∗ 0.0012∗∗∗ 0.0007∗∗∗ 0.0014∗∗∗ 0.0007∗∗∗ 0.0005∗∗ 0.0004∗

(6.51) (6.08) (5.18) (3.95) (5.60) (3.74) (2.10) (1.91)

Time sample 1960-19 1960-19 1960-19 1980-19 1960-19 1980-16 2000-19 2000-16

Monthly dummies
Lagged asset return vol.
PopGrowtht−p

Leveraget−p

DSCRt−p

IPGrowtht−p

WarNVIXt−p

N 714 714 707 479 670 435 239 195
R2 0.374 0.378 0.460 0.496 0.395 0.496 0.191 0.238

B. Single-Family Units BPG Volatility

(1) (2) (3) (4) (5) (6) (7) (8)

σBPG
t−1 0.0015∗∗∗ 0.0014∗∗∗ 0.0010∗∗∗ 0.0007∗∗∗ 0.0013∗∗∗ 0.0007∗∗∗ 0.0005∗∗ 0.0004

(6.85) (6.57) (4.70) (4.08) (6.23) (3.89) (1.98) (1.36)

Time sample 1960-19 1960-19 1960-19 1980-19 1960-19 1980-16 2000-19 2000-16

Monthly dummies
Lagged asset return vol.
PopGrowtht−p

Leveraget−p

DSCRt−p

IPGrowtht−p

WarNVIXt−p

N 714 714 707 479 670 435 239 195
R2 0.378 0.381 0.456 0.496 0.398 0.496 0.188 0.239

Notes: The table presents estimates from equation (4.2) relating CRSP dividend volatility (computed as the volatility
of vwretd − vwretx) to building permit growth (BPG) volatility. In Panel A we use total private residential permits
as the quantity measure Qs,t, but instead use permits attached to single-family units in Panel B. We include in most
specifications a set of controls for other macroeconomic observables directly related to BPG volatility, which might
also drive aggregate financial market volatility. PopGrowth refers to the annual population growth rate from the
Census. Leverage is the aggregate corporate leverage ratio based on firms’ annual filings in COMPUSTAT, computed
as the sum of long-term debts (dltt) and debts in current liabilities (dlc), divided by total stockholders’ equity (seq).
DSCR is the quarterly household debt service coverage ratio from the Federal Reserve, defined as household debt
service payments as a fraction of disposable income. IPGrowth is the month-on-month growth rate in the industrial
production index (INDPRO). In some specifications, we add the war component of the News Implied Volatility Index
(NVIX) of Manela and Moreira (2017). We include a BIC-optimal number of lags for each specification with control
variables, for which we obtain a lag order of p = 1. The time sample varies depending on the data availability of
covariates, with DSCR available starting in 1980, and the NVIX available only up to 2016. t-statistics obtained from
Newey–West standard errors where we select for each specification the minimum lag order such that the estimator
for the covariance matrix is consistent. ***p < 0.01, **p < 0.05, *p < 0.1.
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average leverage ratio for each state. That is, we compute:

Leverages,t =
∑i∈s(dltti,t + dlci,t)

∑i∈s seqi,t
(D.1)

where dltt is total long-term debt outstanding, dlc is debt in current liabilities, and seq refers
to total parent stockholders’ equity. To assign each firm to its HQ state, we splice the list
of COMPUSTAT HQs matched to a gvkey from Bai et al. (2020) covering 1969 – 2003 to an
annex file provided by Gao et al. (2021) for 2004 to 2022. The latter set of authors created the
annex file by scraping SEC 10-K filings to collect the business address over the later period.
The HQ state is distinct from the state of incorporation, which is Delaware for the majority
of firms. We use the HQ state to proxy for location because it reflects the largest fraction of
firms’ physical resources and business operations.

Gao et al. (2021) report that based on SEC filings, between 1995 and 2018, 2% to 3% of
COMPUSTAT firms change their HQ state each year. Given the low probability of year-to-year
cross-state changes to the HQ location, we fill in missing values for state HQs within each firm’s
history by carrying forward and backcasting for firms which have only ever listed a single
HQ state in their available SEC filings; we do not fill in missing locations for firms which
ever change their HQ state.6 After filling in missing values, we then collapse to a state-level
panel of leverage ratios according to (D.1). For nine observations in AK, NM, and WY, reported
seq is negative due to a small number of firms with HQs located in those state-years; we set
those leverage observations to missing. We then winsorize leverage ratios at the 1st and 99th
percentile across the entire panel to minimize the role of measurement error arising from a
combination of missing values for the firm balance sheet variables in (D.1) and a small number
of firms with headquarters in less-populated states. For including leverage ratios as a control
in equation (4.3), we consider the leverage ratio to be as of the start of the following year, in
keeping with the majority of firms’ fiscal year end dates. Hence, the variation due to leverage
is concentrated in the turnover from December to January; monthly dummies account for any
base month effects that this convention creates.7

State-level corporate leverage is pro-cyclical, with large spikes in leverage observed on the eve
of the Global Financial Crisis. There is high degree of geographic dispersion in leverage ratios
that widens following recessions. For instance, the average annual standard deviation in state
leverage ratios is 0.27, compared to 0.44 in 2002, 0.38 in 1991, and 0.37 in 2009.

Figure D.3 plots the estimated predictability of BPG volatility from the GJR-GARCH
specification in equation (C.3), but including interpolated monthly population growth and annual
state-level corporate leverage ratios as controls for local housing demand. We use GJR-GARCH
for this exercise because the distribution of BPG residualized on leverage and population growth
is more skewed than unconditional BPG. Comparing Figure D.3 to Figure C.2, we find the
predictability of BPG volatility for asset return volatility is attenuated for the aggregate U.S.
and most states, but the ordinal ranking of states according to their cumulative 12-month
predictability coefficients is similar after conditioning on housing demand factors.

6While we could also carryback the state HQ location within each gvkey to 1960 when COMPUSTAT coverage
starts, this results in erroneously high leverage ratios > 2 for several small states in the early 1960s due to missing
values for shareholder equity. Hence, we start our sample in 1969 when the Bai et al. (2020) state HQ file begins.

7Alternatively, we could apportion leverage monthly using the fiscal year end date. This is feasible for states
with a large number of corporate headquarters (e.g., New York), but would still require us to interpolate many
state-month-year observations. 67% of COMPUSTAT firms adopt the calendar year as their fiscal year.
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E Completion Rates: Evidence from Building Permit Microdata

In this section, we analyze building permit completion rates using microdata provided by
CoreLogic through their Building Permits product. The dataset contains detailed information on
individual residential building permits across the United States, tracking the status of permits
from issuance to completion. We observe permit-level data for 48 states and the District of
Columbia. Alaska and Mississippi are excluded from our analysis as their non-disclosure laws
prevent access to building permit records. While several other states have non-disclosure laws
for real estate transactions (Idaho, Kansas, Louisiana, Missouri, Montana, New Mexico, North
Dakota, Texas, Utah, and Wyoming), CoreLogic maintains comprehensive permit records for
these jurisdictions through direct relationships with local building departments.

Figure E.1 shows building permit completion rates for new single-family homes in a stylized
map. Coastal states, which typically have more stringent land use regulations, tend to have
lower completion rates (depicted in lighter-shaded quintiles), particularly in the Northeast. For
instance, states in New England and the Tri-State Area fall into the lower completion rate
quintiles. In contrast, several states in the Southeast and Mountain regions, which generally
have fewer land use restrictions, exhibit higher completion rates (darker shades); notable
examples of lax regulation states include North Carolina, South Carolina, and Colorado, which
all fall in the highest completion rate quintiles. The pattern suggests a negative relationship
between regulatory burden and permit completion rates, though this relationship is not uniform
across all states. For example, California, despite its stringent land-use regulations, maintains
moderate completion rates, possibly due to other factors such as strong market demand and
established development processes. These geographic patterns provide evidence that regulatory
environments influence the efficiency of the residential construction process, though other
regional factors likely play important roles as well.
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FIGURE E.1. Single-Family Building Permit Unconditional Completion Rates by State, 2012–2022

HI AK TX FL

OK LA MS AL GA

AZ NM KS AR TN NC SC DC

CA UT CO NE MO KY WV VA MD DE

OR NV WY SD IA IN OH PA NJ CT RI

WA ID MT ND MN IL MI NY MA

WI VT NH ME

Completion Rate

96.2% − 100.0%

88.7% − 96.2%

80.3% − 88.7%

70.0% − 80.3%

23.1% − 70.0%

No Data

Notes: The map shows building completion rates for new single-family homes from CoreLogic, depicted in a stylized
map of the United States. Each state is represented in an equal-sized rectangle to allow for a clearer visualization.
Building completion rates vary significantly across states, with states categorized by their unconditional completion
rate quintiles. White cells with borders indicate non-disclosure states (AK, MS) where permit completion data is
unavailable.
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