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Why Housing Matters: An Old Question with New Data

® A century-old, recurring observation among economists:

® Long (1939): “The building industry is probably the most strategic single factor
in making or breaking booms and depressions”

® Leamer (2007): “Housing IS the business cycle”
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in making or breaking booms and depressions”
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e Striking empirical relations between housing and real/financial cycles:
® Residential investment consistently forecasts GDP (Leamer, 2015)
® Tt leads 10 out of 12 post-war recessions (including the Great Recession)

® Real estate volatility explains the largest stock volatility spike in U.S. history
and the Great Depression volatility puzzle (Cortes & Weidenmier, 2019)

® “Twin bubbles”: Housing peaks consistently precede stock market crashes
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® A century-old, recurring observation among economists:

® Long (1939): “The building industry is probably the most strategic single factor
in making or breaking booms and depressions”

® Leamer (2007): “Housing IS the business cycle”

e Striking empirical relations between housing and real/financial cycles:
® Residential investment consistently forecasts GDP (Leamer, 2015)
® Tt leads 10 out of 12 post-war recessions (including the Great Recession)

® Real estate volatility explains the largest stock volatility spike in U.S. history
and the Great Depression volatility puzzle (Cortes & Weidenmier, 2019)

® “Twin bubbles”: Housing peaks consistently precede stock market crashes

® But we lack granular and historical evidence on the mechanisms:

® Geographic transmission of housing shocks is still unclear
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What We Do: A Century of Local Residential Permits Data
©® Monthly building permits for all U.S. states & 60 MSAs (1919 — 2019)

® Hand-collected + deep learning OCR from archival reports

® First granular, nationwide housing database spanning the pre-1970s era
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® Works across over a dozen crisis episodes
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What We Do: A Century of Local Residential Permits Data
©® Monthly building permits for all U.S. states & 60 MSAs (1919 — 2019)

® Hand-collected + deep learning OCR from archival reports

® First granular, nationwide housing database spanning the pre-1970s era

® Key Finding: Building permit volatility consistently predicts financial stress
® Strong predictor of stock and corporate bond return volatility
® Works across over a dozen crisis episodes

® Holds conditional on housing demand (pop. growth, leverage, disaster risk)

® Novel mechanism: Building permits as forward-looking signals
® Real estate developers have local information
® Permits as a call option reveal beliefs about future fundamentals
® Information flows from “Main Street” to “Wall Street”

® Rationalized by extended version of Grossman & Stiglitz (1980) model
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A Century of U.S. Building Permits Forecasts Crashes
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Preview of Results

® Local building permit growth (BPG) volatility offers a new monthly
factor for forecasting stock and bond markets

® Heterogeneity: driven by building in more supply elastic real estate markets
(the South and sand states) — greater signal-to-noise in low regulation areas

® Key example: BPG vol. contains early info about subprime crisis which is
unrelated to leverage ratios — first PC has ~ 20% incremental R?
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® Key example: BPG vol. contains early info about subprime crisis which is
unrelated to leverage ratios — first PC has ~ 20% incremental R?
® Firm cross-section: local BPG exposure from plant network predicts
individual stock return vol, even conditional on physical risks to production

® Scope for designing strategies using BPG vol to hedge against overbuilding
risk — follow up paper focusing on house prices/return levels as outcomes
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Preview of Results

® Local building permit growth (BPG) volatility offers a new monthly
factor for forecasting stock and bond markets

® Heterogeneity: driven by building in more supply elastic real estate markets
(the South and sand states) — greater signal-to-noise in low regulation areas

® Key example: BPG vol. contains early info about subprime crisis which is
unrelated to leverage ratios — first PC has ~ 20% incremental R?

® Firm cross-section: local BPG exposure from plant network predicts
individual stock return vol, even conditional on physical risks to production

® Scope for designing strategies using BPG vol to hedge against overbuilding
risk — follow up paper focusing on house prices/return levels as outcomes

¢ Quantitatively important relative to alternative explanations

BPG

® Horse-race exercise: adding lags of o in elastic states beats lags of leverage in

an incremental R? sense
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New Stylized Facts about Historical Housing Markets

@® Per capita permits are procyclical and lead crashes

® Example: Florida permits peak 5 months before 1973 OPEC recession and 2
years before GFC
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New Stylized Facts about Historical Housing Markets
@® Per capita permits are procyclical and lead crashes
® Example: Florida permits peak 5 months before 1973 OPEC recession and 2
years before GFC
® In most states, per capita SFH permitting peaked in the 1970s and
collapsed following GFC — consistent with drop in new housing supply

® Use microdata to show SFH permit completion rates > 80% since 1990 —
permits / housing supply + beliefs about local fundamentals
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New Stylized Facts about Historical Housing Markets

@® Per capita permits are procyclical and lead crashes
® Example: Florida permits peak 5 months before 1973 OPEC recession and 2
years before GFC
® In most states, per capita SFH permitting peaked in the 1970s and
collapsed following GFC — consistent with drop in new housing supply
® Use microdata to show SFH permit completion rates > 80% since 1990 —
permits / housing supply + beliefs about local fundamentals
® Housing supply collapse concentrated in areas with stringent land use laws
® By focusing on quantities, complements contemporaneous work which
constructs other measures of historical housing market activity
® Prices (Lyons et al. 2024); construction productivity (D’Amico et al. 2024)

® Inflating permit quantities by proxies for project value matters little for
forecasting = predictability comes from information aggregation
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Developers Concerned about Overbuilding Risk During Booms

Lennar Corp. Posts More Multifamily Losses, Sparking ® Waning demand in former hotspots for
Concerns of US Apartment Overbuilding WFH nomads (e g Austin TX)
.g. ,

Builder Expects Weaker Results in That Business Next Quarter As Industry Completes More

Construction

® Echoes other episodes characterized by
ex post evidence of overbuilding

® 19th century land booms tied to crop
yields: Glaeser (2013)

® 1920s NYC skyscrapers: Barr (2010);
Nicholas & Scherbina (2013)

® 2000s housing cycle: Nathanson &
Zwick (2018)

® Consistent with rational disagreement
Source: CoStar, “Lennar Corp. Posts More Multifamily

Losses, Sparking Concerns of US Apartment Overbuild- mOdelS (eg GrossmanfstightZ)

ing,” June 16, 2023.
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Literature at Intersection of Macro-Finance and Housing

® Origins of financial cycles

® Officer (1973); Schwert (1989); Greenwood & Hanson (2013); Giglio, Kelly, Pruitt
(2016); Manela & Moreira (2017); Jorda et al. (2019); Greenwood et al. (2022);
Kuvshinov (2023); Calomiris & Jaremski (2024)

® Housing markets as a leading indicator of the business cycle

® Stock & Watson (1991, 2010); Leamer (2007, 2015); Case, Quigley, Shiller (2005);
Ghent & Owyang (2010); Goetzmann & Newman (2010); Glaeser (2013); Strauss
(2013); Gjerstad & Smith (2014); Nathanson & Zwick (2018); Cortes & Weidenmier
(2019); Gao, Sockin, Xiong (2020); LaPoint (2022)

® Drivers of historical real boom-bust episodes

® Leverage: Schularick & Taylor (2012); Jorda, Schularick, Taylor (2013); Mian, Sufi,
Verner (2017, 2020); Miiller & Verner (2023)

® Non-Rational Beliefs: Kindleberger (1978); Shiller (1981, 2006); Baron & Xiong (2017)

® Rational beliefs: Garber (1990, 2000); Péastor & Veronesi (2006)
8/52



Intro
0000000®

Our contributions to the literature

® Origins of financial cycles
® Housing markets as a leading indicator of the business cycle

® Drivers of historical real boom-bust episodes

Our contributions

@ New evidence favoring the longstanding hypothesis that housing is the
financial cycle after all + microfounded mechanism as to why:.

® New longitudinal database of local building permits — opens door for
variety of applications to understanding housing markets.
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Model Primitives
® Nest textbook real estate development option model into rational
disagreement framework of Grossman—Stiglitz
¢ Housing Development (Stage 1)

® Unit mass of housing market investors i € [0,1] spanning localities s € {1,...,S}
(states, MSAs, counties)

® Developable land is in fixed supply Ts < 1, and each investor can hold a permit
on at most one parcel (akin to measures in Saiz 2010, Lutz & Sand 2023)
¢ Financial Markets (Stage 2)

® Risky asset pays unknown dividend d in t+1
® Unit mass of investors j(s) in [0,1] in each locality s trading in t at p;

® Unitary asset market, so p = ps, Vs

nisms
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Building Permits as a Real Option (1)
Simple real option value theory (OVT) model of building permits

Value of holding entitled land = earnings potential — construction costs at
highest and best use (Titman, 1985; Geltner, 2014)

Expected value of exercised option depends on success probability f(Xs¢),
construction cost, C; 41, and market value of building + land,

Bisit1+ Lisit1
Et[‘/:s,tJrl] = f(xs,t> : ]Et[Bi,s,H—l + Li,s,t—i—l] - Ci,s,t+1 (1)

Construction costs paid in period t + 1, but known in ¢
If successful, property valued at its market price: (Bjgs+1 + Ligi+1)

Xs ¢ time-varying factors of project success (e.g., macro fundamentals, local
weather, regulatory shocks)
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Building Permits as a Real Option (2)

® Replacement cost approach to valuing buildings == Bjsi11 = Cigt41, Vi
® Standard way of valuing building permits (e.g., Dun & Bradstreet’s)

® Assumes teardown costs + admin fees included in Cjg ;41

® Suppose that housing production is Cobb—Douglas, so land values are
proportional to the attached structure’s value: Ly = ¢ - B¢

® Reflects how tax assessor’s offices value properties

B[V 1] = (@15 fXet) + (FXs) = 1)) - oo @)
Vist = max{0, B[V}, 4]} (3)

® Davis & Heathcote (2007): estimate ¢ = 0.56 over 1975 — 2006
—> 0.64 break-even probability for buying permit

nisms
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Building Permits as Public Signals in an Island Economy (1)
® Observed permitting activity in island s is Qs = [; 1{Vjs; > 0} - di < T,

® BPG g5+ = Alog Qs forms public signal for local factors Xg
® Influence both the value of the permit but also other risky assets like stocks

® Main Street to Wall Street: Qs informative about local performance of firms
and willingness to invest in area — f(Xg¢)

® Growth rates rather than levels to avoid truncated distributions (Yuan, 2005)

® Embed this problem into a standard Grossman & Stiglitz (1980) two-period
setup with a risky asset (e.g., stocks, corporate bonds)

® Stock pays a risky dividend and is subject to noise trading — asset supply
A =m+u with u ~ N(0,02)

® Asymmetric information: informed investors observe Qs ;, while uninformed
investors do not — rational disagreement
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Building Permits as Public Signals in an Island Economy (2)

® Suppose in each period informed investors observe a new ¢s; and then try to
forecast asset prices according to:

gs =d+e with g5 ~ N(0,0‘s(s))
e Standard CARA-linear demand system would yield risky asset price of form:

ps = ¢o(s) + Pg(s) - (qs + Puls) -u), Vs (4)

® ¢, loading on public signal from permits gs and ¢ - ¢, loading on noise

® Coefficients ¢(s) > 0 are functions of signal precision: x,) =1/ (75(5)

® (oefficients vary by locality through fraction of informed investors A; and BPG
volatility Oy(s) — heterogeneous predictability in the data
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Main testable predictions from the model
@ Building permits proxy for local economic fundamentals

® Strong local fundamentals Xs ¢ increase probability project is successful

® Already well-established fact in the literature: Ghent & Owyang (2010); Strauss
(2013); Howard et al. (2024)

® BPG positively predicts financial asset price movements — dp/9dqs > 0

® Sign of comovement between BPG volatility and asset price or total return
volatility is theoretically ambiguous but heterogeneous across localities

® Comovement is positive for sufficiently small (7;(5) (e.g. Florida)

® Signal precision of BPG depends on geographic and regulatory
constraints on local real estate development

® Intuition: signal more informative in housing supply elastic markets

nisms
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Building Permits Data Sources
©® Dun & Bradstreet’s Review (1919 — 1957): city-level permit values

® Extend Cortes & Weidenmier (2019) to a much longer period

® Bureau of Labor Statistics Construction Reports (various years, 1921 — 1953)

® Annual data from legacy version of Census survey — validation check

@® State and local government building permit surveys (1958 — 1960): bridge
period between Dun’s and Census

@ Historical Census Building Permits Survey [BPS] (1960 — 1987)

® Modern Census BPS (1988 — 2019): modern data already downloadable
from FRED/Census up to present
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Digitization Process and OCR Techniques
® Combine standard OCR software with customized routine to digitize > 30k
pages of tables
® Layout Parser (Shen et al., 2021): deep learning (DL) Python package
optimized for digitizing historical documents
® k-means clustering + GPUs to match training environment of DL algorithm

® > 2.5x speed improvement relative to pure hand-collection

® Quality control procedures:
©® Run optimized Layout Parser on entire text corpus
® Assign score to each page based on fraction of blocks identified
® Hand-correct high-scored pages
@ For low-scored pages, hand-collect with help of ABBYY + Excel VBA

@ Check if row totals line up (with rounding error tolerance)
19/52
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Supplementary Data Sources
©® CRSP Stock Database (1926 — 2019): WRDS

® CRSP—-Compustat merge for firm balance sheet controls

® Corporate bond market data:
® DOW Corporate Bond Index: GFD/Finaeon (1915 — 2019)
® Issue-level data: SDC Refinitiv (1990s — 2019)

® Dun & Bradstreet’s DUNS Marketing Identifier (1969 — 2019):
plant-level locations, employment, sales — match firms to Compustat

@ CoreLogic Building Permits microdata (1990 — 2019): use panel
dimension to examine completion rates + completion times

® Modern house and land price index data:
® S&P Case-Shiller (1988 — 2019): available for 20 MSAs
® State-level Zillow HVI (2000 — 2019)

nisms
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Advantages of Permits as Forecasting Variable

@ Permits are continuously available at monthly frequency with
disaggregated, nationwide coverage over long time periods

Mecha
00000

® Other readily available economic statistics are released with long lags and

often revised between releases

® Labor market statistics: QCEW has 5 month lag after quarter end, state-level

BEA employment only quarterly starting in 2018

® True also for forward-looking corporate variables like investment rates in 10Qs,

released with 1-2 month delays

® Permits are more forward looking than other real estate indicators

® House price indices reflect moving average of past transactions, only go back to

1970s across all geographies

® Building completions lag permits at least one quarter for SFH, and > 1 year for

larger MFH

nisms
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Greater 12-Month Unconditional Completion Rates for Residential
Permits in Low Regulatory States

1 0.836 - 1.000
H0.725 - 0.836
10.667 - 0.725
[£J10.481 - 0.667
[10.007 - 0.481

® Completion rates slightly counter-cyclical in nationwide but more pro-cyclical
in low-regulation areas
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Building Permit Value Growth: Price X Quantity
® Main measure: log of local Building Permit Growth (BPG)

N
Xst+1 = Alog(vs,t+1)/ with Vs,t = ps,t X Qs,t = Z Pist
i=1

® V;:: building permit value
® Depends on quantity (Qs;) and average value per permit index (Ps;)
® P;; is an index capturing average value per permit (p;g ;)

® (), depends on demand and supply factors (e.g., demand for new properties,
availability of developable land, land use regulations)

Ideally would observe option value [V, ;] — focus on Qs

Geographic units (s) based on data availability across boom-bust cycles
(e.g., Dé&B: 164 largest cities since 1919; Census BPS: 60 MSAs since 1960).
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GARCH Model for Building Permit Growth (BPG) Volatility

® Building permit series available at monthly frequency

® Seasonally adjust using Census’s X-13 ARIMA-SEATS model

We follow Cortes & Weidenmier (2019) to extract volatility from BPG

GARCH(1,1) for one-period ahead conditional volatility of local BPG, Ugtp G,

Xsp = 00+ 61 - Xs1—1 + €54, with & ~ N (0, (Ung)z) or g ~ ty(+)

(05 ) = o+ a1 &5y g g (059)%

a; > 0; o +ap < 1@ estimated via QMLE

GARCH(1,1) yields global solutions while GJR-GARCH and E-GARCH are
more unstable for permits data
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BPG Vol Spikes Prior to Spikes in Stock Return Volatility

Conditional BPG volatility (GARCH)

Dun’s Review Period (1919 — 1957)

CRSP total return volatility

Conditional BPG volatility (GARCH)

Main Results GFC Mechanisms
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® Conditional BPG volatility spikes with a < 6 month lead relative to the stock

market in 12 out of 15 NBER recessions
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CRSP total return volatility
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BPG Vol Also Spikes Prior to Spikes in Bond Return Volatility

Dun’s Review Period (1919 — 1957) Census BPS Period (1961 — 2019)

.04 | 025
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Conditional BPG volatility (GARCH)
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Conditional BPG volatility (GARCH)

DOW corporate bond total return volatility
DOW corporate bond total return volatility
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® Break in BPG and bond total return volatility after late-1980s Savings &
Loan Crisis (Stock & Watson 2010)
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Main Specification: Return Volatility and BPG Volatility

ot =PBo+ O +Z,51 (Ttr—l-Z,Bsr i sztp+€t

= 1
seasonal b=
dummies

autocorrelation BPG volatility local controls
for locality s

® 0;: Total return volatility for an asset class (e.g., stock or bond total returns).
o gBF G: One-period ahead conditional volatility (from GARCH) for locality s

° Seasonality O or 031 X d¢: Accounts for asset market seasonality (Ogden 2003,;
Heston & Sadka 2008)

® Local controls Xg¢: pop. growth, corporate or HH leverage ratios, disaster risk

e 7*: lag order of T = 12 months for literature comparability (e.g., Schwert,
1989; Cortes & Weidenmier, 2019), but also AIC and BIC (74, = T5,c = 1)
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Firm Cross-Sectional Specification

® Extend main specification to cross-section of equities or bonds j

T* T
! : BPG '
Oip =0+ 1+ ) B Ot + ) @i X | ) Wkpro1 Ot | T Xje1 &4
=1 =1 kej v
controls
own autocorrelation share-weighted exposure

® (. sales or employment shares across all plants k in firm’s network of
locations J — Dé&B Historical data from 1969 — 2019

® Bartik-style shock with possibly time-varying weights on BPG vol. exposure
® Weights capture physical exposure to overbuilding risk neg. impacting demand
for firm’s products
® Firm-level controls Xj;: leverage, EBITDA, size/age bins, Tobin’s Q

® CRSP-Compustat merge based on matching names to create crosswalk between
gvkey and DUNS
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Post-1960s Aggregate U.S. BPG vol predicts aggregate return vol

Asset Market: Equities Corporate Bonds
) 2) ®3) (4) (5) (6) ©] ®) 9) (10)

oBPG 0.088***  0.027**  0.026"*  0.025**  0.064** 0.070*** 0.036*** 0.035*** 0.033"** 0.016"**

(2.82) (2.45) (2.47) (2.39) (2.57) (4.68) (3.76) (3.40) (3.18) (3.77)
Time sample 1960-19  1960-19 1980-19 1980-16 2000-16 1960-19 1960-19 1980-19 1980-16 2000-16
Monthly dummies v’ v’ v’ v v’ v’ v’ v’ v’ v’
Lagged asset return vol. v v’ N NG v’ v’ v’ v
PopGrowth; v v N v’ v’ v v v
Leverage;—) v’ v’ v v v v
DSCR;—p v v v v v v
IPGrowth;—) v’ v’ v’ v’ v’ NG
DisasterNVIX;—, v’ v’ v’ v’
N 714 707 479 435 195 714 707 479 435 195
R? 0.109 0.471 0.463 0.471 0.605 0.185 0.367 0.452 0.444 0.544

Notes: Total nationwide residential permits data used to construct UEPlG from the monthly Census BPS.
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Predictability Also Holds for CRSP Dividend Volatility
Dividend Vol (1) (2) (3) (4) (5) (6) (7) (8)
oBre 0.0016***  0.0014*** 0.0012*** 0.0007*** 0.0014*** 0.0007*** 0.0005**  0.0004*

(6.51) (6.08) (5.18) (3.95) (5.60) (3.74) (2100 (1.91)
Time sample 1960-19 1960-19 1960-19 1980-19 1960-19 1980-16  2000-19  2000-16
Monthly dummies v’ N v’ v’ v’ N v v’
Lagged asset return vol. v v v v v v v
PopGrowth; ), v v v v
Leverage;—p, v v’ v v
DSCRy—p v v v
IPGrowth;—, N v v
WarNVIX;—, N NG v
N 714 714 707 479 670 435 239 195
R? 0.374 0.378 0.460 0.496 0.395 0.496 0.191 0.238

e Larger R? for bonds due to predictability of interest rates by housing starts

® Monetary policy response to inflation passing through to bond coupon rates
(e.g. Ludvigson & Ng 2009)
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A. Stocks: 12-month horizon B. Bonds: 12-month horizon C. Stocks: 1-month horizon D. Bonds: 1-month horizon
United States United States United States United States

FL TX  — OR TX

M —— OH  — FL — OR  e——
OR — Wi — GA — FL  —
GA — FL o— AR — GA — —
AR — CA — — TX - — . AL —
MS [ — OR — o— MO —_— WA ——
OH — GA  — M = CA  ——

CA — I — co — (A ——
OK —_— WA — AL —_—— Wi ——

cT — . CO  — CA —e MO ——
co [ - OK  om—— WA —— OH

IL —_— L — VA A7 w——
WA —_— AR — NC CO  m——
MO —_— KS — ommm—— Wi NC  ——

Wi — Ml — MS L =

IN — . AL — OK MS  m—

VA — MS — — cT NI -—

RI - LA —— NE Ul —

AL —_— MO —— IC N o-—

NC —— N)  —— NJ g AR e

NH - NG —— NM - Ml
NM - NH  —— D e [

KS - CT NV e cr o m

™ NE — —— ™ et D =

1A 1A —— LA oK -
MN VA —— VT NH =

TX AZ  —— RI et KY ==

LA KY — —— SD . TN =

D TN —— ND - DE =

ME D —— 1A —— MT

ND Rl —— AK . 1A

NI NY - PA b NE

NV MD — w—-— AZ e VA

AZ VA ME et KS

AK MN OH + PA

NE ur o= NH e SD

SD MT = IN o NM
wv SO = MT Wy

NY DE = MN Rl

VT PA e wy NY

MT ND uT MN

Ut NM 4 KsS wy
wy Wy oo SC AK

sc AK WY ND

PA wy o MD VT

MD VI o+ KY MD -t

DE SC o+ NY SC +

KY ME  --#-r DE ME -+

0.02 0.04 000 002 004 001 002 003 004 0.00 0.02 0.04 0.06

0.06 -0.01 0.00
Sum of Coefficients: BPG Volatility

Loading [l Negatve [l Posiive  Statistical Significance (p < 0.10) -~ No — Yes
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Similar Geographic Patterns Using Pre-1960s Permit Valuations

A. Stocks: 12-Month Horizon B. Bonds: 12-Month Horizon
United States United States
US (Except NY) US (Except NY) —
WI I —— NE —
NE — OH ——
OH — Wi ——
IN ——— IL —
FL — KS —
Mi — PA —
PA — IN —
™ — N ——
L — AL —
cT — M ——
KS e MN —
AL — OR —
MN — FL —
MT — CT —
OR — WA  — .
sC — sC —
WA s . MT -—
wy o . TX —
co — wv -
ND — CA ——
uT e AZ =
CA e co -
NC —-— ND -
TX . AR -
AZ DE -
AR LA
KY uT
LA NY
GA KY
ID ' D
1A + NC "
NY i GA +
DE . ' 1A
OK - MO
MD . - sSD
MO - OK - -
SD - MD —p
VA RIS VA ——
NJ . = ME —— —
ME — — — NJ — —

-0.02 -0.01 0.00 0.01 0.02 -0.02
Sum of Coefficients: BPG Volatility

Loading [l Negative [ll Positve  Statistical Significance (p < 0.10) - No — Yes 35/ 52
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Tightly Regulated Jurisdictions Issue Fewer SFH Permits

State-Level SFH Permits MSA-Level SFH Permits

S — Trendine: R? =005, Sope=-022 g — Trendine: k% = 0.13, Slope=-0.35

SFH permits per capita (2010-2019) (z:score)

E
z

-1 o 1 2 3 -1s -10 -05 00 05 10 15 20
WRLURI (z-score) WRLURI (z-score)

® Wharton Index (WRLURI) captures political economy constraints on new
construction (e.g. voting procedures, # of steps in approval process)

® Use 2006 version from Gyourko, Saiz, Summers (2008) to avoid reverse causality
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Signal Precision Also Negatively Correlated with Supply Inelasticity

* Estimate oy ~ Y32, 0PPS — {BBPC, o (BEPC)}

* corr(1/o(BEPC), WRLURI) = —17% for stocks, —22% for bonds
e corr(1/0(X, BBPC), WRLURI) = —19% for stocks, —21% for bonds

® Similar neg. correlations with generative Al-based index of local zoning features
from Bartik, Gupta, Milo (2024)

® Negligible correlation with (un)available land measures (Saiz, 2010)

® — construction costs rather than physical constraints determine permitting
within city centers on the margin

® Similar correlations to WRLURI if zoom into counties (Lutz & Sand, 2023)

® Consistent with model framework: signal precision is greater in places
where permits are free to respond to beliefs about local economic conditions
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Subprime Crisis: Abandoned Housing in California

In the Central Valley, the Ruins of the
Housing Bust

In Merced, Calif., frames of houses in the Riverstone development have bleached in the
sun for more than a year. Three-fourths of existing-home sales in Merced County are
foreclosures. Jim Wilson/The New York Times
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Using the GFC to Highlight the Power of BPG Vol

® Longitudinal results: BPG vol. stronger predictor of stock return vol. around
GFC, but weaker for bonds

® BPG vol. has nearly a 2x higher incremental R? for CRSP dividend vol.
compared to total return vol. in post-1960s period

® Equally good predictor of total return and dividend vol. in post-2000s period
when dividends became less volatile

® Grossman-Stiglitz framework is about predicting risky cash flows
® Test: do building permit swings predict subprime mortgage crisis
before defaults are widely known beyond loan servicers?

® Mayer & Pence (2008): local share of SFH and small MFH mortgage loans in
subprime pool as of 2005

® More data available for modern period: firms’ plant locations and house prices to
look at P x Q — predictive power dominated by Q rather than P

nisms
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Loading on BPG Factor Greatest in Subprime Crisis States

Stock Return Volatility: States Bond Return Volatility: States
IN 0.03
OH
0.10

z 2 MINg

g MD GAFL E 0.02 MD CALA

> ||_ LA >

O] O]
OK

% 0.05 < ot Ms | MO Az

2 ms A2 £ N

o =]

N o

] | : HL

S 0.00 ——--.. £ 000 --l

j=2) (=

£ £

o =]

] []

S ks

- -0.01

-0.05

Mayer-Pence Statistical Significance Statistical Significance (p < 0.10) Mayer-Pence
Subprime Loan Ranking (p < 0.10) No Subprime Loan Ranking
W Rank #1-10 No — Yes [l Rank #1-10
B Rank #11-20 — Yes B Rank #11-20
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Loading on BPG Factor Greatest in Subprime Crisis States

Stock Return Volatility: States

IN

® 7 out of top 10 states by factor

loadings are also in the top 10 in
LOH

5 010 Mayer—Pence subprime ranking

Z MD GAFL

3 Ata

£ oos 0K e All 20 Case-Shiller MSAs are ranked
£ Ms within top 60 subprime metros by

; -..Iilll loan Share — MSA Coefplots

S 000 gd

§ ® Areas with more flipping like Las

0,05 Vegas predict downturn with longer
leads (Chinco & Mayer 2016)

® “Informed” investors drive BPG

Mayer-Pence Statistical Significance

Subprime Loan Ranking (p < 0.10) predlctablhty
W Rank #1-10 No

B Rank #11-20 — Yes
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First PC of ¢BPC Identifies “Subprime” Factor: States

A. State-Level BPG Volatility

101

6 v v v U U T U v U U

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020
— PCL — PC2 -~ PC3 -~ PC4 - - PC5 -~ PC6 - - PCT -~ PC8

® First PC explains 24% of variation in c£¢
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First PC of ¢BPC Identifies
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“Subprime” Factor: MSAs

B. MSA-Level BPG Volatility

h ZOIOO 20‘02 20‘04 ZOIOG 20‘08 20‘10 20‘12 20‘14 20‘16

— PCL — PC2 -~ PC3 -~ PC4

20‘18 ZOIZC

PC5 -~ PC6 -~ PC7 -~ PC8

® Sharper peaks in PC1 when zoom in to MSA level
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First Principal Component Tracks Major Events in GFC

Lehman Brothers
12:2 — | (Sept. 2008)
8.0
7.0
6.0
5.0
4.0
3.0
2.0
1.0
0.0
-1.0
-2.0
-3.0 i
40 :
-5.0

Peak foreclosure
auction volume
(July 2010)

BPG

.t

Bear Stearns
(Mar. 2008)

Principal component of 6

2000m1 2002m1 2004mi1 2006m1 2008mi1 2010m1 2012m1 2014mi1 2016m1 2018m1 2020m1

— First PC - Second PC — Third PC Fourth PC

— Fifth PC Sixth PC Seventh PC
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Subprime Factor Only PC That Predicts Return Vol around GFC

Asset Market: Equities Corporate Bonds
(1) (2 ®3) 4) ) (6) (7) (8)
PCY, [“subprime” factor]  0.0012°*  0.0003**  0.0003* 00003  0.0003"*  0.0001***  0.0001"*"  0.0001***
(2.78) (2.09) (2.06) (2.27) (4.45) (2.51) (2.44) (2.64)
P, —0.0003  —0.0003 —0.0001  —0.0001
(1.41) (1.35) (1.54) (1.63)
pc®, 0.0002 0.0001
(0.82) (1.36)
pc, 0.0001 0.0000
(0.28) (0.55)
pc®, —0.0002 —0.0001
(0.77) (1.47)
pc®, 0.0001 0.0001
(0.53) 1.10
pc”), 0.0003 ~0.0001
(0.99) (112)
Sample period 20002019 20002019 20002019 20002019 2000-2019 20002019 2000-2019 2000-2019
Monthly dummies v v v v v v v v
Lagged asset return vol. v v v’ v v v
R? 0.173 0.563 0.565 0.569 0.202 0.488 0.493 0.504
N 239 239 239 239 239 239 239 239
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Predictive Power of Firms’ Exposure to BPG Vol

*

*

i i
— BPG /
Ojt = o + 17 + E , ,B],T 0.],1‘—T+ E Pjr X 2 , Wit—1-1 Uk,t_r + X],tfl + Ejt
=1 =1 keJ
1 (2 (3) 4 (5) (6) (7) ®) )
s 0.0046**  0.0029**  0.0031**  0.0019*  0.0048"*
(2.12) (2.26) (2.36) (1.70) (2.08)
T ofS 0.0079**  0.0057**  0.0062***  0.0100**
(2.29) (2.04) (2.71) (2.43)
Time sample 1989-2019  1989-2019  1989-2019  1989-2019  2000-2019 1989-2019 1989-2019 1989-2019 2000-2019
Share weights wy Emp Emp Emp Sales Emp Emp Emp Sales Emp
Monthly dummies N v’ v N v N v v v
Firm FEs v v v v v v v v v
Lagged asset return vol. v v’ v’ N NG v v
Firm controls v v v v v v
# of firms 2,067 2,066 1,865 1,865 1,280 1,865 1,713 1,713 1,174
N 157,040 156,907 135.808 135,808 73,832 132,342 117,345 117,345 65,348
Adj. R? 0.31 0.40 0.43 0.43 0.35 0.33 0.42 0.42 0.35

Notes: Firm controls include ez ante firm size, age, EBITDA, Tobin’s Q, leverage ratio, natural disaster risk exposure
(SHELDUS). We focus our sample on 1989 — 2019, as plant location information is incomplete in earlier vintages of DnB.

Mechanisms
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Why Is (Local) Housing the Financial Cycle?

® Main result: local building permit growth volatility consistently predicts
return volatility at 12-month horizons

® Driven by most supply elastic housing markets

BPG

® Predictability can be neg. in high o states with inelastic supply

Alternative explanations:
@® Leverage cycles: similar predictability even when mortgages uncommon
® Results hold conditional on HH and corporate leverage ratios
® Reforms/political upheavals: more slow-moving than monthly permits
® Very little change in Wharton Index over last 20 years

® Physical risks: results hold conditional on disaster component of NVIX or
SHELDUS realized disaster severity measures

@® Demographics/migration: holds conditional on population growth, plus steady
decline in inter-state migration (Kaplan & Schulhofer-Wohl 2017)
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Conclusion: BPG Vol As a New Factor

® New evidence from 100 years of local building permits data in favor of
longstanding hypothesis that housing is the financial cycle

® Predictability holds across almost all recession episodes
® True for both equities and corporate bond markets
® Holds conditional on possible confounding housing demand-side factors
® Local building permit growth (BPG) volatility offers a new monthly
factor for forecasting asset volatility, returns, prices

® Larger, supply unconstrained real estate markets (the South and “sand states”)
consistently lead the stock market at 1-month to 12-month horizons

® At firm level, BPG factor unrelated to other physical sources of risk

® Future applications of our data to study questions related to local housing
supply and macroprudential housing policy
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Epilogue: Post-Pandemic Market Corrections from Overbuilding

That marks a sharp reversal from previous years when Austin’s real-estate
market was sizzling. The city attracted waves of remote workers on six-figure

tech salaries. Others arrived after companies such as Tesla and Oracle moved

offices there, taking advantage of lower taxes and less business regulation.
Austin’s economy grew at nearly double the national rate, and it became the
country’s 10th-largest city.

Now, it is contending with a glut of luxury apartment buildings. Landlords are
offering weeks of free rent and other concessions to fill empty units. More single-
family homes are selling at aloss. Empty office space is also piling up downtown,
and hundreds of Google employees who were meant to occupy an entire 35-story
office tower built almost two years ago still have no move-in date.

Source: WSJ, “Once America’s Hottest Housing Market, Austin is Running in Reverse” (March 18, 2024).
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THANK YOU!

SSRN paper downloadable here
S

https://papers.ssrn.com/abstract=4855353
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Sources of Census Building Permit Survey Reports

® Census Building Permit Survey (BPS) conducted continuously at the monthly
frequency from 1959:M5 to present

® Available at the state and local levels from 1960:M5 onward
® For 1959:M5 — 1960:M4, we obtain state and MSA-level permits by aggregating
up from counties
® For 1960 — 1987, Census BPS reports not digitized and held in archives,
various academic and Federal Depository Libraries
® State-level monthly report PDFs for 1970 — 1987 obtained directly from Census
® Bulk of remaining monthly reports downloaded from HathiTrust

® We obtained reports not in HathiTrust from the CT Federal Depository Library

® BPS survey follows a consistent format over time, but MSA and county
geographic coverage changes, especially from 1960s to 1970s
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Example: Layout Parser in Action on Census Documents

e Example from Table 3 (permit
counts) of March 1986 Census
Building Permits Survey for MSAs

® [P identifies “blocks” in red

® Akin to “tokens” or separated
chunks of characters

® Use GPUs and increase contrast to
; better match training dataset
| g : consisting of more historical texts
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Example: Output from Layout Parser for Census
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Example: Layout Parser in Action on Dun’s Review

GARCH Details
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Additional Results
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Output from Layout Parser for Dun’s Review

Year
1939

$17,445,311
6,140,380
597,893
402,767
2,957,016
192,621
263,322
558,119
661,973
2,420,010
3,471,267
604,855
346,
834,430
502,568
1,004,514
1,218,233
400,847
889,850
945,326
4,306,519
2,962,883
2,168,552
889,
3,418,300
2,345,277
530,278
365,125
5,012,169
1,788,838
1,052,635
4,923,418
3,526,

460

503

Year
1838

$11,345,156
2,656,361
367,644
269,905
3,210,069
245,995
633,686
681,164
423, 402
3,104,570
4,331,673
141,889
472,925
622,168
416,118
1,946,538
1,078,749
1,164,521
516,889
934, 426
2,511,964
2,805,307
1,326,000
617,738
3,806,015
1,411,784
420,652
270,132
2,246,931
1,649,976
1,611,625
2,721,715
34,382,162

Year
1937

$21,434,997
2,782,232
745,211
514,220
600, 869
188,922
227,049
567,065
389,239
$,597,172
6, 290, 636
267,652
425,525
1,028, 189
576,470
1,118,840
1,353,240
436,547
791,780
1,081,448
4,453,976
3,262,098
1,492,924
764,149
3,228,100
1,121,954
658,105
427,487
2,803,045
1,087,522
1,352,025
4,259,031
34,273,011

»

New England:
Boston.eeraans
Bridgepor .

Bristol.

Brockton...
Cambridge....
Chelsea.....
Everett.......
Fall River,
Fitchburg. .
Greenwich. .
Hertford...
Haverhil
Holyoke..
Lawrence
Lowell,..,..
Lysns.z.oi .
Manches ter,
Medford....
New Bedford
New Britain,.
New Haven....
Newton..

Portland.,
Providznce.

Seringfield, Mass

tamiord. .
Vaterbury.....
West Har iford.
Viorces ter, ., £

Year
1939

$17,445,311
» 140,380
597,893
402,767
2,957,016
192,621
263,322
558,119
661,973
2,420,010

2,345,277

3,526,503

Year Year

1938 1937
$11,345,156 $21,434,997
5,656,361 2,782,232
367,644 745,211
269,905 511,220
3,210,069 3,600, 869
245,995 188,922
633,686 227,049
681,164 567,065
423,442 389,239
3,104,570 3,597,172
4,331,673 6,290,636
141,889 267,652
472,925 425,525
622,168 1,028,189
416,118 576,470
1,946,538 1,118,840
1,078,749 1,353,240
1,164,521 436,547
516,889 791,780
934, 426 1,081,448
2,511,964 4,453,976
2,805,307 3,262,098
1,326,000 1,492,924
617,738 764,149
3,806,015 3,228,100
1,411,784 1,121,954
420,652 658,105
270,132 427,487
2,246,931 2,803,045
1,649,976 1,087,522
1,611,625 1,352,025
2,721,715 4,259,031
3,382,162 3,273,111

ndix
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Details on Scoring Quality of OCR Output

1381
1381
1381
1381
1483
1549
1696
1912
211

1857
1857
1950

2144

950
950
950
950
1200
1200
1200
1200

255
265
259
255
265

2TRRITBIRER o

141
143

x2

y.2

block_type
3292 rectangle
168 rectangle
168 rectangle
110 rectangle
109 rectangle
110 rectangle
109 rectangle
110 rectangle
109 rectangle
108 rectangle
109 rectangle
168 rectangle
150 rectangle
166 rectangle
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® LP places each block on the
coordinate grid and classifies it

® Block type = “rectangle” —
tabular format

® Set a rotation angle to account for
the fact that scans are off-centered

® Each block then receives a “score”
for its quality
® Tesseract API confidence level
® We drop any output from blocks

with score = —1 (blanks) or < 90
and hand-collect leftovers

Model Appendix
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Caution with Using Census Valuation Numbers

“Because of the nature of the building permit application process, valuations
may frequently differ from the true cost of construction. Any attempt to use
these figures for inter-area comparisons of construction volume must, at
best, be made cautiously and with broad reservations.”

— U.S. Census Bureau,

Residential Building Permits Survey Documentation, Master Compiled Data Set

— We focus on quantities and use standard house price indices at the correct
geographic level for the modern period 1990s onward

“Some building permit jurisdictions close their books a few days before the
end of the month, so that the time reference for permits is not in all cases
strictly the calendar month.”

— Focus on SFHs, which are less likely to be strategically timed.
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Seasonally Adjusting Raw Permit Series

® (Census reports seasonally adjusted permit series for 1988 onward but no
longitudinal adjustment factor series

® We apply the Census X-13 ARIMA-SEATS model (Linux machine) to
each of our longer-run time series for each state/MSA

® We modify Fortran source code to accommodate longer time series

® Almost exactly match Census seasonally adjusted series for both SFH and total
permits in modern period for each location

® For our X-13 filtered SFH permits, avg. correlation of 99.999% with
Census series during modern period

e Small differences due to default location-specific ARIMA intercept
® Avg. level gap between the SFH series of & 0.23% (median = 0%)
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X-13 filtered SFH permits
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Matching Seasonally Adjusted Series Using X-13 Filter

Single-family home permits

= 0.9997 .
1500002 6
0.0005
=21943 ~
R-squared = 0.9999
o
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0 50000 100000 150000

FRED/Census SFH permits, seasonally adjusted

X-13 filtered total permits

Total private residential permits

200000 = 0.9994
s.e. = 0.0006

R-squared = 0.9998
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0 /
0 50000 100000 150000

FRED/Census total permits, seasonally adjusted
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How We Splice Together Permit Series

® Small gap between our two main permits data sources
® Dun’s Review ceased publishing permits tables after Oct. 1957
® (Census Bureau took over Building Permits Survey in May 1959, subsuming the
semi-annual surveys conducted by the BLS
® Use New York State Construction and Real Estate Census, which has permit
valuations bridging this period
® Includes SFH and MFH = roughly matches the totals reported in Census and
Dun’s Review during overlapping months
e We then perform the following steps:
@ Deflate to 2012 dollars using Shiller’s (2001) long-run CPI series
® Seasonally adjust each data source’s series using the X-13 filter

® Interpolate backwards using a VAR(1) model with NYS data as the input
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Dun’s Review Coverage and Sources

® Dun’s Statistical Review was an economic and financial monthly publication
reporting permit valuations (construction cost approach)

® Data shared with BLS Construction Reports — cross-validated to check for
errors in digitization

® Matches “total” series reported later in Census BPS

® Still not in the public domain, so we scanned these from the collection of
volumes at the University of Illinois Library

® Extend Cortes & Weidenmier (2019), who digitized tables for 1928 — 1938

® Steps to harmonize geographic unit definition across Dun’s and Census:
@ Aggregate permits within each city to the state level

® Inflate up by inverse population weight in each year = total population of
surveyed cities relative to total state population

® Run X-13 seasonal adjustment on resulting series
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Number of Cities Reporting Building Permits in Dun’s Review
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Seasonally Adjusted Building Permits (Thousands)
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Seasonally Adjusted Building Permits (Thousands)
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Accounting for “Blips” in the Multi-Family Series

¢ Hypothesis: multi-family permits better predict return volatility and at
longer horizons given time to build and investor composition

® More likely to be institutional investors building at scale, with geographical
diversification of properties — pro forma forecasts at acquisition stage

® Average time to build is x months vs. x months for SFHs
® Problem: multi-family development more sensitive to state/local tax
incentive schemes — bunching around tax year ends

® Qualitatively similar results, but noisier BPG conditional volatility

® Some clear examples in our data:

® NYC 421a property tax exemption reforms in July 2008 and 2015 (Soltas, 2022)

® (alifornia’s Proposition 13 in June 1978

Data Appendix GARCH Details Additional Results Model Appendix
000000000000 00000e000 0000000 0000000000 0000
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Permit Fees Are Small Fraction of Total Construction Costs

SFH permit fee rates
0.097,0.531]

EJINEEEEER

Source: Horton et al. (2024): “Property Tax Policy and Housing Affordability,” National Tax Journal.

® Fees on new SFH permits < 1% in the median county; exceed 10% in some
pockets of California

® City planning rules very sticky, unlikely to be correlated with local economic

conditions at high frequency — component of supply elasticity
19/42
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Conditional Time from Permit to Completion by Property Type

Median time to completion, conditional on completion, by structure type
500

1000

Time to completion (days)

500

single family multi-family, 2-4 units multi-family, 5+ units multi-family, unkown number of units
Structure type
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Time from Permit to Completion Varies Over Business Cycle

Share of applications completed within 6, 12, 18, and 24 months, by year of application

Share completed within

o & months

e 12 months.
- 18 months.
+~ 24 months

Share of applications completed

1990 2000 2010
Year
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Taxonomy of GARCH Models

® We explore three main classes of GARCH models common in the literature:

® GARCH(1,1) (e.g., Bollerslev, 1986; Chan, Chan, and Karolyi, 1991):
oF=ag+a-e2 | +ay (o BPG)

® GJR-GARCH (Glosten Jagannathan, and Runkle, 1993):
oF=agt+ar e +ay (0PPE)2 + e 1{e; 1 <0}

® E-GARCH (Nelson, 1991):
in(oP" = o+ a1+ (St ) + o In (o0 47 (|t
t—1

t—1

_ 2)
T
® We show E-GARCH does not yield global solutions for aggregate permits

data, and GJR-GARCH usually does not yield a unique solution

® Headline results robust to using either GARCH or GJR-GARCH or normal
vs. t-stat innovations &;
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Parameter Restrictions for GARCH Simulations

Simulation Version 1
® GARCH specs:
® Optimization constraint: aq +ap <1
® Starting values constraint: select two
random non-negative values satisfying
a1 +ap =09
® Parameter domain:
g >0,0<a; <0<y <1
® GJR-GARCH specs:
® Optimization constraint:
ap+ap+y/2<1
® Starting values constraint: select three
random non-negative values satisfying
a1 +ax+9 =09
® Parameter domain: &y > 0,0 < aq <
L,0<ay <;0<y<1

Simulation Version 2

® GARCH specs:
® Optimization constraint: aq +ap <1
® Starting values constraint: select two
random non-negative values satisfying
a1 + ap = 0.999
® Parameter domain:
g >00<a <0<y <1
® GJR-GARCH specs:
® Optimization constraint:
ap+ap+y/2<1
® Starting values constraint: select three
random non-negative values satisfying
a1 +ap +y =0.999
® Parameter domain: &y > 0;0 < aq <

L,0<a <;0<y<1
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Stability of GARCH(1,1) to Starting Value Choice

® Fit demeaned U.S. aggregate permit

Convergence of Coefficients for Conditional Volatility Models

o] . o oArcH series according to Simulation V1
gl Do

0.75 1 . e ® EGARCH ® basinhopping routine in Python
0.50 1 °
025 1 ® Draw with replacement 10,000

. ol © ° e starting values «; € [—1,1] and

° estimate via QMLE
—0.25 A
0,50+ ¢ GARCH(1,1) always converges to
0751 the same parameter values (@1, a;)
S * GJR-GARCH and E-GARCH do

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

@ not yield global solutions
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Convergence and Parameter Stability across GARCH Models

A. Single-Family Homes vs. Total Private Residential Permits: Simulation Version 2

Single-Family Homes Permits Total Private Residential Permits
Convergence  N. Unique Convergence  N. Unique Convergence  N. Unique Convergence  N. Unique
Rate Solutions Rate Solutions Rate Solutions Rate Solutions
GARCH 0.9876 44 0.9984 4 0.9984 2 0.9999 2
GJR-GARCH 0.9457 7 0.9986 14 0.9976 5 0.9996 3
E-GARCH 0.9974 11 0.9998 7 0.9992 6 1 1
Sample 1960 - 2019 1960 — 2019 1980 — 2019 1980 — 2019 1960 - 2019 1960 — 2019 1980 — 2019 1980 — 2019

B. Comparing Simulation Version Results in the Post-2000s Period

U.S. Building Permits: P x Q

Simulation Version 1 Simulation Version 2
Convergence  N. Unique Convergence  N. Unique
Rate Solutions Rate Solutions
GARCH 0.9999 4 0.9999 4
GJR 0.9997 20 1 16
E-GARCH 0.3907 3859 0.9979 4
Sample 2000 - 2023 2000 - 2023 2000 - 2023 2000 - 2023

Notes: Convergence rate is defined as the fraction of starting parameter draws for which the optimization routine converges
to a solution. A unique solution is defined up to five decimal places.
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High pairwise correlations across GARCH model estimates

Series Sample Period Corr(¢gar,oajr) Corr(cgar,0rqr) Corr(cgir,CEGR)
SFH Permits 1960 — 2019 0.8115 0.9538 0.8282
SFH Permits 1980 — 2019 0.8899 0.9754 0.8829
Total Permits 1960 — 2019 0.8590 0.6854 0.5439
Total Permits 1980 — 2019 0.9162 0.7866 0.6840

Notes: For each unique solution [a1,@;] obtained from each GARCH model, compute average pairwise correlations across

solutions between two models.
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GJR-GARCH or t-stat Innovations Accommodates Skewness in BPG

A. U.S. BPG in Dun’s @D B. Cross-Sectional BPG in Dun’s
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Bai—Perron Structural Break Tests: SFHs vs. Total Residential

BPG Volatility (GARCH) BP Levels
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® Level breaks more common than volatility breaks

® Modal state has 2 breaks in its level series
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Tightly Regulated Jurisdictions Issue Fewer Total Permits

State-Level Total Residential Permits MSA-Level Total Residential Permits

3 g — Trendiine: R? = 0.02, Slope=-0.14 25 e — Trendiine: R? = 0.02, Slope=-0.15
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E
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1 00 0s
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U.S. SFH BPG Vol Predicts Agg. Return Vol

Asset Market: Equities Corporate Bonds
) 2 ®3) (4) (5) (6) ©] ®) 9) (10)

oBPG 0.074***  0.024**  0.022**  0.022**  0.049** 0.076"** 0.044"** 0.040*** 0.038"** 0.015"**

(2.60) (2.40) (2.49) (2.41) (2.18) (6.07) (4.48) (4.54) (4.28) (3.99)
Time sample 1960-19  1960-19 1980-19 1980-16 2000-16 1960-19 1960-19 1980-19 1980-16 2000-16
Monthly dummies v’ v’ v’ v v’ v’ v’ v’ v’ v’
Lagged asset return vol. v v’ N NG v’ v’ v’ v
PopGrowth; v v N v’ v’ v’ v v
Leverage;—) v’ v’ v v v v
DSCR;—p v v v v v v
IPGrowth;—) v’ v’ v’ v’ v’ NG
DisasterNVIX;—, v’ v’ v’ v’
N 714 707 479 435 195 714 707 479 435 195
R? 0.095 0.470 0.462 0.471 0.599 0.258 0.391 0.471 0.463 0.543

Notes: Single family home (SFH) permits data used to construct UEPlG from the monthly Census BPS.
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COIltI'OHlIlg for Local Leverage -+ POp Growth s
A. Stocks: 12-month horizon B. Bonds: 12-month horizon C. Stocks: 1-month horizon D. Bonds: 1-month horizon
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Sum of Coefficients: BPG Volatility

Loading [ll negatve [ll Posiive  Statistical Significance (p < 0.10) -+ No — Yes
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Robustness to Using GJR-GARCH cers
A. Stocks: 12-Month Horizon B. Bonds: 12-Month Horizon C. Stocks: 1-Month Horizon D. Bonds: 1-Month Horizon
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PCA of BPG Vol over Full Census Period (1961 — 2019)

A. Total Private Residential Permits B. Single-Family Home Permits

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020

—— PCl1 —— PC2 PC3 PC4 PC5 PC6 PC7 PC8

¢ First PC dominated by input supply shocks (e.g., OPEC) when we include the
full Census sample period
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Financial + Heavy Manufacturing Sectors Drive Predictability

B Building permit growth volatility OLeverage
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Notes: Figure 6 from Cortes & Weidenmier (2019 RFS).
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Industrialized States Important Around Depression Vol Spike

B Building permit growth volatility OLeverage
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Notes: Figure 8 from Cortes & Weidenmier (2019 RFS).

® In industrialized states, BPG vol permits “as good” as leverage in predicting
stock return vol.
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Equilibrium Definition

Noisy Rational Expectations Equilibrium

A noisy rational expectations equilibrium (NREE) is a price function
p({gs}5_,,u) and set of demand functions Xj(s) for the informed (I) and un-
informed (U) investors j(s) with information set wj(, satisfying:

Eld|wjs] = (1+7)-p

Portfolio optimization: Xj() = ¥ Varlag] (5)
S

Market clearing: Y [/\s - x1(qs, p(gs, 1)) + (1= Ay) - xu(p(qs,u))} =m+u
- 6)

No cross-market arbitrage (law of one price): ps = p, Vs (7)

40/ 42



Model Appendix
[e]e] e}

Equilibrium Pricing Function

Proposition 1: Equilibrium Pricing Function

The price function which satisfies the three conditions for a noisy rational
expectations equilibrium is linear in the local signal gs and noise u# and follows:

p = ¢o(s) + ‘Pq(s) (95 + Pu(s) - u),Vs (8)

Moreover, ¢4(s) > 0 and ¢, (s) < 0, regardless of the coefficient of absolute
risk aversion 7y, so the asset price loads positively on building permit growth
in each locality and negatively on noise.

® Standard linear pricing function follows from CARA pricing kernel +
normally distributed signals
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Comparative Statics

Transformed price signal: p = P = ols) =qs+ Pu(s) - u 9)

Pq(s)

Corollary 1: Comparative Statics

Given the equilibrium price function and the definition of the transformed
price signal in (9):
@ Let ‘7727 denote the variance of the equilibrium risky asset price.
8(7%/ 8(7;(5) has an ambiguous sign, but is positive for sufficiently small

local BPG volatilities 0-;(5)'

® Normalize the ez ante risky asset price to be p; = 0, so that the total
return can be written as r4 = py11 + dy41, with variance
o2 = (7]!2, + (1 +2¢,()) - 2. Then 803/8(75(5) has an ambiguous sign, but

is positive for sufficiently small local BPG volatilities (75(5).
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